Сегодня 01 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → чёрная дыра
Быстрый переход

Обнаружена самая яркая и быстрорастущая чёрная дыра — в день она поглощает массу Солнца

Международная группа учёных обнаружила наблюдаемую в созвездии Живописца самую яркую из известных сверхмассивную чёрную дыру, масса которой составляет 17 млрд солнечных, и каждый день она поглощает сравнимый с солнечным объём вещества.

 Источник изображений: eso.org

Источник изображений: eso.org

Первоначально объект J0529-4351 считался одной из звёзд в Млечном Пути, поскольку его отличала слишком высокая для квазара яркость в видимом диапазоне. Лишь в прошлом году астрономы из Австралийского национального университета смогли идентифицировать его как квазар — активное ядро галактики на расстоянии 12 млрд световых лет от Земли и в 600 трлн раз превосходит Солнце по яркости. Диаметр аккреционного диска, вращающегося вокруг этой сверхмассивной чёрной дыры, оказался также рекордным — он составил 7 световых лет или в 15 тыс. раз больше расстояния между Солнцем и Нептуном. Ещё одной отличительной особенностью J0529-4351 является то, что его излучение не искажается и не усиливается гравитационными линзами других галактических ядер.

Учёные отметили, что поиск квазаров — непростая задача, требующая точных данных наблюдений на больших участках неба. Массивы необходимых данных настолько высоки, что для их анализа и выявления квазаров часто применяются модели искусственного интеллекта. Но эти модели обучаются на существующих данных, то есть потенциальными кандидатами на статус квазаров становятся лишь объекты, которые похожи на уже известные. И если новый квазар, как в этом случае, оказывается ярче любого из наблюдавшихся ранее, то алгоритм ИИ может его отклонить и классифицировать объект как не очень удалённую от Земли звезду.

Уникальные свойства J0529-4351 помогут учёным в обозримом будущем уточнить массу сверхмассивной чёрной дыры, а также проследить за её вращением вокруг собственной оси — в этом астрономам поможет прибор GRAVITY+, который планируют установить на «Очень большой телескоп» (VLT, Чили). Исследователи смогут оценить соотношение массы сверхмассивных чёрных дыр и яркость производимого ими свечения.

Первые чёрные дыры родились не из звёзд, подтвердили данные телескопа «Джеймс Уэбб»

Проблема первородства звёзд и чёрных дыр — это своего рода проблема курицы и яйца. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. «Джеймс Уэбб», похоже, готов дать ответ на эту загадку.

 Источник изображения: The Astrophysical Journal Letters

Источник изображения: The Astrophysical Journal Letters

На днях в журнале The Astrophysical Journal Letters была опубликована работа, в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой.

Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД.

Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем.

«Мы утверждаем, что от чёрных дыр отлетают газовые струи облаков, превращая их в звёзды и значительно ускоряя скорость звездообразования, — говорят авторы работы. — Мы не можем точно разглядеть эти сильные ветры или струи далеко-далеко, но мы знаем, что они должны присутствовать, потому что мы видим много чёрных дыр на ранних стадиях развития Вселенной».

Сверхмассивная чёрная дыра средней активности неожиданно начала испускать сверхбыстрый ветер

В показаниях космического рентгеновского телескопа ESA XMM-Newton учёные обнаружили странные данные, которые не соответствовали всем предыдущим наблюдениям. Сверхмассивная чёрная дыра (СЧД) в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко.

 Художетсвенное представление чёрной дыры в центре галактики, испускающей ветер из заряженных частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

В редких случаях чрезвычайной активности сверхмассивная чёрная дыра в центре галактики испускает настолько сильный ветер — выброшенные электромагнитными полями частицы вещества из аккреционного диска, что он буквально выдувает межзвёздные газ и пыль за пределы галактики. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина.

Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода.

Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Однако регистрируемое рентгеновским телескопом ESA XMM-Newton излучение от Mrk 817 было более чем умеренным. Контрольная проверка с помощью другой рентгеновской установки — NuSTAR NASA — подтвердило верность полученных данных. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным.

Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга.

«Очень редко можно наблюдать сверхбыстрые ветры, и еще реже обнаруживать ветры, энергии которых достаточно, чтобы изменить характер галактики-хозяина. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters.

Приливное разрушение звёзд чёрными дырами случается повсеместно, выяснили учёные

Практически все сто с небольшим известных науке случаев приливного разрушения звёзд чёрными дырами зафиксированы в галактиках с недавно закончившимися процессами звездообразования. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример, как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно.

 Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Приливное разрушение звезды чёрной дырой в представлении художника. Источник изображения: ESO/M. Kornmesser

Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру.

Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта. Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах.

Астрономы из Массачусетского технологического института предложили искать события приливного разрушения звёзд чёрными дырами в инфракрасном диапазоне. Официальное сообщение о первом открытии такого события в инфракрасном спектре поступило в апреле 2023 года. Метод был признан рабочим и взят на вооружение. И это привело к лавине открытий.

 Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Источник изображения: Zwicky Transient Facility/R.Hurt (Caltech/IPAC)

Поиск данных в наблюдениях инфракрасного телескопа NASA NEOWISE и последующий анализ кандидатов с помощью данных ряда наземных телескопов позволил обнаружить 18 ранее неизвестных событий приливного разрушения звёзд чёрными дырами. Шесть из них были позже отброшены, поскольку были связаны с активностью чёрных дыр в центрах галактик. Однако 12 событий были идентифицированы с высокой достоверностью, и все они были открыты впервые.

Более того, все 12 новых событий приливного разрушения звёзд, зафиксированных в данных инфракрасных наблюдений, выявлены там, где раньше их не находили — в сильно запылённых галактиках. Похоже, раньше мы просто не могли уловить такие явления, поскольку пыль блокирует оптический и рентгеновский диапазоны. В инфракрасном же диапазоне никто до этого не искал подобные явления.

 Источник изображения: The Astrophysical Journal, 2024

Галактики с кандидатами в события приливного разрушения звёзд в исследовании. Источник изображения: The Astrophysical Journal, 2024

По всему получается, что приливные разрушения звёзд могут происходить фактически в галактиках любых типов и на любых стадиях их развития. Во-первых, это позволяет забыть о проблеме несоответствия количества этих событий в теории и в процессе наблюдения (их наблюдалось меньше, чем предсказано, чему теперь нашли объяснение). Во-вторых, теперь у учёных появится больше данных для всестороннего изучения физики приливного разрушения звёзд, что обогатит науку новыми знаниями о процессах во Вселенной.

На краю нашей галактики нашли загадочный объект, природа которого выходит за рамки знаний человечества

Группа астрономов из Манчестерского университета обнаружила на краю нашей галактики объект, который учёные затруднились идентифицировать. Находка является тусклой и не видна в обычные телескопы. Найти загадочное нечто удалось по наблюдению за пульсаром, на орбите которого объект расположен. Проблема в том, что масса неизвестного объекта выходит за рамки наших знаний о нейтронных звёздах и чёрных дырах. И одни и другие с такой массой ещё не встречались.

 Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Двойная система из пульсара и чёрной дыры в представлении художника. Источник изображения: Daniëlle Futselaar

Почему это важно? Если загадочный объект окажется нейтронной звездой, то это откроет путь к новой физике. Его масса лежит в пределах 2,09–2,71 солнечных масс. Теоретически нейтронная звезда не может быть тяжелее 2,3 масс Солнца, но в верхней части диапазона открытий таких объектов либо нет, либо они малодостоверные. Насколько мы понимаем физику процесса, более тяжёлые нейтронные звёзды коллапсируют в чёрные дыры. Если же такие звёзды существуют, то там происходят такие процессы, о которых мы не знаем, вплоть до существования каких-то иных элементарных частиц.

С другой стороны, мы ещё не открывали чёрных дыр массой менее 5 солнечных и с подтверждением открытий в нижней части диапазона массы этих объектов тоже не всё однозначно. Поэтому если загадочный объект окажется чёрной дырой, то это будет легчайшая чёрная дыра за всё время наблюдений. Это не разрушит основы физики, но даст пищу для множества научных теорий.

Учёные не сомневаются в достоверности параметров открытого ими объекта. Он обнаружен на орбите пульсара PSR J0514-4002E, излучающего сверхкороткие радиоимпульсы (миллисекундной длительности), и это позволило с высочайшей точностью рассчитать массу системы и массу каждого из объектов: пульсара и пока непонятно чего.

 Симуляция возможной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Симуляция вероятной конфигурации загадочной двойной системы. Источник изображения: OzGrav, Swinburne University of Technology

Система расположена в звёздном скоплении NGC 1851 примерно в 54 тыс. световых годах от центра галактики Млечный Путь. Сбором данных занимался массив радиотелескопа MeerKAT в Южной Африке. Неизвестное тело совершает один орбитальный оборот за 7,44 суток. Учёные намерены приложить все усилия, чтобы узнать его природу. Вне зависимости от идентификации объекта, открытие обещает оказаться значимым для науки.

Опубликовано более чёткое прямое фото чёрной дыры — снимок показал динамику аккреционного диска

Чёрные дыры теперь не просто позируют на фотографиях, они участвуют в фотосессиях. Коллаборация Event Horizon Telescope (EHT) опубликовала новые изображения M87* — сверхмассивной чёрной дыры в центре галактики Мессье 87 — используя данные наблюдений, сделанных в апреле 2018 года. На очереди публикация снимков 2021 и 2022 года, а также подготовка к съёмке в 2024 году. Эйнштейн был бы в восторге.

 Изображения чёрной дыры M87* с разницей в одн год. Источник изображения:

Изображения чёрной дыры M87* с разницей в один год. Источник изображения: Event Horizon Telescope

Первое в истории изображение чёрной дыры — объекта M87* — было обнародовано в 2019 году. Данные собирались «Телескопом горизонта событий» в апреле 2017 года. Несколько разбросанных по всей Земле радиотелескопов синхронно наблюдали за объектом в процессе так называемой высокочастотной радиоинтерферометрии. Сеть радиотелескопов превратилась в виртуальный радиоинструмент размерами почти с Землю. Это дало впечатляющее разрешение, что позволило уловить электромагнитные волны от энергетических процессов в аккреционном диске чёрной дыры, удалённой от нас на 55 млн световых лет.

С оптическими телескопами такое провернуть невозможно. Синхронизация по визуальным объектам требует невообразимого объёма данных, тогда как радиоданные легко синхронизируются и свозятся для обработки в единый центр на обычных цифровых носителях. Например, на жёстких дисках. Именно так были получены первые изображения чёрной дыры. Точнее, её тени на фоне аккреционного диска.

В апреле 2018 года коллаборация «Телескопа горизонта событий» провела новый сеанс наблюдений за M87*. Были получены ещё более чёткие и обширные данные, за что надо благодарить, во-первых, новый радиотелескоп в сети — добавилась тарелка в Гренландии и, во-вторых, наблюдение в четырёх частотных диапазонах около 230 ГГц вместо двух, как раньше.

Новое наблюдение позволило закрепить достижение — факт получения отчётливых прямых изображений чёрных дыр. Также учёные убедились, что радиусы тени чёрной дыры и линзированного аккреционного диска за год не изменились, что предсказывало учение Эйнштейна. Наблюдаемой чёрной дыре особенно нечего поглощать в месте её размещения и её рост будет практически незаметным на фоне существования человечества, а не то, что год спустя.

Тем не менее, новые данные позволяют судить о процессах в диске аккреции вещества. Например, яркая область за год сместилась против часовой стрелки примерно на 30°. Также детальное изучение данных раскрывает динамику магнитных полей вблизи объекта, плазмы и энергии. Учёные рассчитывают увидеть джеты этой дыры, пока на изображениях видны только признаки выброса струй энергии.

Кроме того, учёные понемногу оттачивают алгоритмы для анализа изображений чёрных дыр, которые предстают перед нами в своём истинном обличье, если так можно сказать об объектах, в принципе невидимых для наших приборов. Всё что у нас есть — это тень чёрной дыры (втянутые за горизонт событий фотоны) и искажённое чудовищной гравитацией линзированное изображение аккреционного диска.

Подтвердилось открытие самой древней чёрной дыры во Вселенной — она не укладывается в наши представления о природе

Работа с докладом об открытии самой древней чёрной дыры во Вселенной прошла рецензирование и была опубликована в журнале Nature. Благодаря космической обсерватории им. Джеймса Уэбба в далёкой и древней галактике GN-z11 удалось обнаружить центральную чёрную дыру рекордной для тех времён массы. Остаётся гадать, как и почему это произошло и, похоже, для этого придётся изменить ряд космологических теорий.

 Галактика GN-z11 в представлнии художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 в представлении художника. Источник изображения: Pablo Carlos Budassi/Wikimedia Commons, CC BY-SA 4.0

Галактика GN-z11 была обнаружена ещё в наблюдениях орбитального телескопа «Хаббл» в 2016 году. Этот объект находится от нас на удалении 13,4 млрд световых лет, то есть существовал во времена, отстоящие от Большого взрыва всего на 440 млн лет. Запуск инфракрасной обсерватории «Джеймс Уэбб» обещал множество открытий в ранней Вселенной, ведь свет из тех времён настолько растягивается в процессе движения фотонов через бездну времени и пространства, что банально уходит из видимого диапазона в инфракрасный.

Спектральный анализ света от GN-z11 показал присутствие в нём сверхразогретых ионов углерода и неона. Это указывало на признаки аккреции — обычного разогрева вещества перед падением на чёрную дыру. Эмиссия в линиях спектра была настолько интенсивной, что чёрная дыра своим излучением буквально затмевала галактику-хозяина. И немудрено, хотя галактика GN-z11 была в 100 раз меньше Млечного Пути, чёрная дыра в её центре потянула на 1,6 млн солнечных масс, тогда как чёрная дыра в центре нашей галактики имеет 4 млн солнечных масс.

Теперь, когда учёные убедились в существовании чёрной дыры подобной невообразимой для тех времён массы, придётся переписывать модели и космологические теории эволюции этих объектов и самой Вселенной. Похоже, «Уэбб» на этом не остановится, что позволит собрать достаточно материала для создания новых моделей появления и роста чёрных дыр и описания процессов в ранней Вселенной.

 Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Галактика GN-z11 в данных телескопа «Хаббл», полученных в 2016 году. Источник изображения: NASA, ESA

Например, если опираться на современные теории, чёрная дыра в центре GN-z11 должна была питаться веществом в пять раз быстрее, чем мы считали. В противном случае она не набрала бы детектируемую массу к 440 млн лет после Большого взрыва. Также она должна была зародиться не в результате коллапса гигантской звезды, а непосредственно из коллапса межзвёздного газа, возникшего после рождения Вселенной. Будем ожидать, что собранного «Уэббом» материала хватит для составления новых космологических гипотез, которые затем превратятся в стройные теории.

Научная подработка: навигационные спутники могут стать детекторами чёрных дыр и тёмной материи

Спутники систем навигации представляют собой сложнейшие приборы по координации синхронизированного с атомными часами времени и расстояний с учётом релятивистских явлений. Они способны и обязаны компенсировать любые гравитационные воздействия на их орбиты. Это уже готовые датчики гравитационных аномалий, сообщили европейские учёные и предложили превратить их в охотников за чёрными дырами и тёмной материей.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

«Мы впервые предложили использовать замеры гравиметрических научных приборов и параметры орбит спутников глобальных навигационных систем для поиска аномалий, порождённых скоплениями тёмной материи и примордиальными [первичными] чёрными дырами, которые сближаются с Землёй на достаточно близкое расстояние. Работа этого подхода уже была проверена на базе одного из спутников навигационной системы Galileo», — пишут исследователи, которых цитирует информагентство ТАСС.

Первичные чёрные дыры слишком малы, чтобы их гравитационные волны могли уловить современные лазерно-интерферометрические гравитационно-волновые обсерватории. Считается, что они образовались из неоднородностей первичной материи вскоре после Большого взрыва. Многие из них уже испарились за счёт излучения Хокинга, но самые большие могут ещё оставаться во Вселенной. Это объекты планетарной массы, и в случае пересечения Солнечной системы в относительной близости Земли навигационные спутники отреагировали бы на их присутствие, как и на присутствие сгустков тёмной материи.

Группа европейских физиков под руководством профессора Брюссельского свободного университета (Бельгия) Себастьяна Клессе разработала методику косвенного использования развёрнутых на орбите навигационных спутниковых группировок для поиска примордиальных чёрных дыр в окрестностях Земли, включая поиск скоплений тёмной материи.

Очевидным образом прохождение небольшой чёрной дыры или сгустка тёмной материи рядом с Землёй окажет измеряемое воздействие на движение околоземных искусственных спутников, например, их ускорение и большую полуось орбиты. В сочетании с наземным оборудованием и спутниками по изучению земной гравитации это позволит примерно определить массу и положение гравитационных аномалий, если таковые произойдут, и сделать вывод о вероятной природе вызвавших их объектов.

Согласно предварительным расчётам, один спутник навигационной системы Galileo сможет уловить такую гравитационную аномалию на удалении около 1,5 а.е. от Земли (от Земли до Солнца в среднем 1 а.е.). Но чем больше спутников будет задействовано, тем дальше будут отодвигаться границы чувствительности.

Нечто подобное 10 лет назад проделали российские астрономы. Тогда они использовали данные орбитальных движений Солнца, планет и некоторых астероидов, чтобы попытаться обнаружить гравитационные аномалии в Солнечной системе. Наблюдение за навигационными спутниками в течение 30 лет способно на порядок улучшить определение подобных аномалий и принести весомый научный результат. Более того, если в окрестностях Земли будет обнаружена первичная чёрная дыра у учёных уже есть идея превратить её в аккумулятор энергии. Но это уже другая история.

«Джеймс Уэбб» обнаружил кандидата в самые древние чёрные дыры

Каждый новый научный инструмент обеспечивает непрерывный поток удивительной информации, но только некоторые из них способны кардинально изменить наши знания о мире, в котором мы живём. Таким уникальным инструментом стала инфракрасная космическая обсерватория им. Джеймса Уэбба. Только с её помощью удалось заглянуть ещё дальше в глубины Вселенной, где многое ещё только рождалось.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Одной из загадок мироздания для учёных остаётся зарождение и эволюция чёрных дыр. Положение с ними усугубляет то, что они не обнаруживаются напрямую, поскольку из чёрных дыр не может вырваться никакое электромагнитное излучение. Наблюдать такие объекты можно только косвенно, например, по целому спектру активности во внутренней области аккреционного диска, где вещество начинает быстро падать на чёрную дыру.

Одно из наблюдений «Уэбба» в ближнем и среднем инфракрасном диапазоне показало присутствие похожей активности в частотном спектре, исходящем от галактики GN-z11, свет которой обсерватория наблюдала на этапе через 440 млн лет после Большого взрыва. Согласно проведённому учёными моделированию, сигнал мог порождаться сверхмассивной дырой примерно в 1,6 млн солнечных масс. Это очень большой объект для того времени. Современные теории эволюции чёрных дыр с трудом могут объяснить появление такого объекта в указанное время.

Очевидно, что для зарождения и последующего развития чёрной дыры до подобных размеров необходимо было сочетание ряда условий. Например, для коллапса облака «первичной» материи вскоре после Большого взрыва в первичную чёрную дыру требовалось достаточного объёма тяжёлых элементов в нём, наличие рядом источника ультрафиолетового излучения для подогрева и ряд других условий. Затем новорожденная чёрная дыра должна была активно питаться окружающим веществом, чтобы быстро вырасти до указанных размеров, на что тоже есть ограничения.

Если найденный кандидат в самые древние чёрные дыры действительно окажется тем, о чём думают учёные, это позволит задать или расширить рамки для вывода новых моделей эволюции данных объектов. Пока же статья об открытии остаётся на сайте препринтов arХiv.org и ещё не прошла рецензирования для печати в одном из ведущих научных журналов.

В сердце Млечного пути нашли звезду из чужой галактики

После 8 лет наблюдений за звездой в самом центре нашей галактики Млечный Путь японские учёные пришли к выводу, что она прибыла к нам из другой галактики. Это первое доказательное наблюдение такого объекта. Теперь учёным предстоит выяснить больше деталей о таинственной звезде и её системе.

 Источник изображения: Miyagi University of Education/NAOJ

Источник изображения: Miyagi University of Education/NAOJ

Звезда S-типа, получившая обозначение S0-6, обнаружена в окрестностях сверхмассивной чёрной дыры Стрелец А* в центре нашей галактики. Звёзды типа S обычно движутся по сильно вытянутым долгопериодическим орбитам. Звезда S0-6 не составила исключения, но вращалась она вокруг чёрной дыры на удалении всего 0,04 светового года. Длительные наблюдения за звездой подтвердили её траекторию вокруг чёрной дыры. Поскольку окрестности чёрных дыр не располагают к звёздообразованию, напрашивается вывод, что данная звезда прибыла туда из другого места. Но откуда?

Ответ на этот вопрос помог дать спектральный анализ света звезды. Во-первых, по наличию в спектре линий тяжёлых элементов и по их интенсивности можно сделать заключение о возрасте звезды. Чем меньше в ней тяжёлых элементов, тем она старше. Возраст S0-6 астрономы оценили в 10 млрд лет. Она всего на 3 млрд лет младше Млечного Пути. Во-вторых, спектральный анализ раскрывает химический состав объекта. Химия S0-6 оказалась совсем не такой, как у других звёзд из исследуемой области пространства. Это означает, что звезда родилась в другом месте и только много времени спустя была захвачена чёрной дырой в центре нашей галактики.

Химический состав S0-6 оказался похожим на состав звёзд из карликовых галактик, окружающих Млечный Путь. Тем самым, считают учёные, она прибыла к нам из чужой галактики, что не должно нас удивлять. За время своей жизни Млечный Путь поглотил не одну карликовую галактику, и звезда из одной из них вполне могла проделать путь к его центру и оказаться там захваченной сверхмассивной чёрной дырой.

Чёрную дыру можно превратить в аккумулятор энергии, доказали учёные — но построят такой очень нескоро

Представленные парой китайских учёных расчеты показывают, что гипотетические крошечные чёрные дыры могут стать источником энергии. Исследователи доказали возможность создания гравитационных накопителей энергии с КПД до 25 %. Более того, даже отсутствие таких чёрных дыр не будет проблемой. Вместо них в «аккумуляторы» можно будет поместить тёмную материю, и она будет работать как надо.

 Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Источник изображения: ИИ-генерация Кандинский 2.2/3DNews

Опосредованно наблюдаемые нами чёрные дыры обладают массой как в несколько солнечных масс, так и сверхмассивные. Проблемы есть с обнаружением чёрных дыр промежуточной массы и сверхмалых, к которым относятся так называемые гипотетические первичные чёрные дыры. Но если такие чёрные дыры размером с один атом где-то есть во Вселенной, то их можно использовать как аккумулятор или генератор для хранения и получения электрической энергии, о чём в новой работе рассказали Чжан-Фенг Май (Zhan-Feng Mai) и Рун-Цю Ян (Run-Qiu Yang) из Тяньцзиньского университета (Китай).

Учёные теоретически доказали, что чёрная дыра размерами с один атом и массой от 1015 до 1018 кг будет способна вырабатывать энергию порядка гигаэлектронвольт. Энергию можно будет получать за счёт преобразования гравитационных воздействий со стороны чёрной дыры в электричество с КПД не менее 25 %.

«Принимая во внимание тот факт, что чёрная дыра обладает чрезвычайно сильной гравитационной силой, возникает интересный вопрос: если рассмотреть, хотя бы теоретически, можем ли мы использовать гравитационную силу чёрных дыр для выработки электрической энергии, т.е. использовать чёрные дыры в качестве батарей? — пишут они в своей статье. — В данной работе мы теоретически доказываем, что мы можем использовать чёрную дыру Шварцшильда в качестве аккумулятора».

Главным в этих расчётах стало доказательство возможности подпитки чёрной дыры заряжёнными частицами, ведь чем меньше чёрная дыра, тем быстрее она испаряется за счёт излучения Хокинга. Исследователи математически доказали осуществимость такой идеи, хотя до её практической реализации дело если и дойдёт, то в необозримом будущем. Подпитывать такой аккумулятор можно будет, поместив его в ядерный реактор. Расчёты показывают, что первичная чёрная дыра будет поглощать до 25 % альфа-частиц, получаемых при распаде радиоактивного топлива. Иначе говоря, ядерная энергия с приличным КПД будет превращаться в кинетическую.

Другим важным аспектом исследования стало определение диапазона масс, для которых такой аккумулятор имел бы практическую ценность. Оказалось, что в этот диапазон попадает тёмная материя. Она также могла бы работать в предложенной схеме «аккумулятора» с похожим результатом и тоже стала бы источником энергии, о чём исследователи рассказали в статье, которая предложена для публикации в журнале Physical Review D, а пока выложена на сайте arXiv.

У чёрной дыры в центре нашей галактики нашли неизвестную, но регулярную активность

Два мексиканских учёных на основании общедоступных данных от гамма-телескопа «Ферми» обнаружили активность возле сверхмассивной чёрной дыры в центре нашей галактики. Чёрная дыра Стрелец А* в центре Млечного Пути считается спокойной. Она не пожирает массы вещества вокруг себя, и поэтому множественных выбросов из её области нет. Однако кое-что от неё прилетает, и учёные отыскали вероятный источник загадочных вспышек.

 Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Несколько лет назад учёные обнаружили периодические вспышки в рентгеновском диапазоне, которые приходили к нам со стороны чёрной дыры Стрелец А*. Астрофизики Густаво Магальянес-Гихон (Gustavo Magallanes-Guijón) и Серхио Мендоса (Sergio Mendoza) из Национального автономного университета Мексики решили детальнее разобраться в этом вопросе и обратились к открытым данным орбитального гамма-телескопа Ферми. Учёные проанализировали 180 дней записей телескопа в период с 22 июня по 19 декабря 2022 года. О результатах анализа они сообщили в статье на сайте препринтов arХiv.

Анализ заключался в обработке и поиске закономерностей, особенно тех, которые проявляются периодически. В результате они нашли одну из них. Оказалось, что из окрестностей Стрельца А* с достоверностью 3 сигма (для «железного» подтверждения открытия требуется достоверность не менее 5σ) каждые 76,32 мин приходит гамма-сигнал. С большой вероятностью вокруг чёрной дыры в центре Млечного Пути вращается сгусток газа на расстоянии примерно как Меркурий от Солнца со скоростью около 30 % от скорости света.

Учёные считают, что облако газа будет излучать также в других диапазонах, и оно точно связано с ранее обнаруженными периодическими вспышками в рентгеновском диапазоне. Из самой чёрной дыры не вылетает никакое излучение, но в области поглощения вещества в диске аккреции процессы протекают очень и очень активно и сопровождаются выбросами энергии. Возможно в будущем Стрелец А* ещё зажжёт, но пока только подмигивает.

Серия беспорядочных сверхмощных вспышек в космосе поставила астрономов в тупик

Учёные вновь зарегистрировали загадочное космическое явление LFBOT — светящийся быстрый синий оптический переход. Все ранее наблюдаемые события LFBOT сопровождались яркой вспышкой и быстрым затуханием, тогда как зарегистрированное в сентябре 2022 года событие AT2022tsd положило начало наблюдению целой серии из нерегулярных 14 вспышек разной интенсивности. Что-то на удалении одного миллиарда световых лет от нас долго горело и взрывалось.

 Событие в представлении художника. Источник изображения: Robert L. Hurt/Caltech/IPAC/Cornell University

Событие LFBOT AT2022tsd в представлении художника. Источник изображения: Robert L. Hurt/Caltech/IPAC/Cornell University

За свою непредсказуемость событие LFBOT AT2022tsd получило прозвище «Тасманийский дьявол». Впервые явление LFBOT было зарегистрировано в 2018 году. Нечто далеко во Вселенной совершило колоссальный выброс энергии, видимый в оптическом диапазоне в синем цвете, и очень быстро снизило свою яркость. Все ранее наблюдаемые вспышки сверхновых длились существенно дольше, что заставило признать существование неких иных процессов во Вселенной.

Событие AT2022tsd стало поистине уникальным, придав LFBOT (Luminous Fast Blue Optical Transients) ещё больше загадочности. В течение 120 дней после первой регистрации вспышки последовало ещё 14 вспышек с неравным интервалом. Более того, часть последующих вспышек была большей яркости, чем предыдущие.

Безусловно, у учёных есть пара гипотез, что происходило в случае LFBOT AT2022tsd. С большой вероятностью мы действительно видим последствия взрыва сверхновой, которая превратилась либо в чёрную дыру, либо в нейтронную звезду. На месте некогда яркой звезды остался её труп — намного меньше, но со своими странными свойствами.

«Удивительно, но вместо того, чтобы стабильно угасать, как можно было бы ожидать, источник ненадолго становился ярче, снова и снова, — рассказала ведущий автор работы Анна Хо (Anna Ho), доцент Корнельского университета. — уже является своего рода странным, экзотическим событием, так что это было ещё более странным».

Как сообщается в посвящённой исследованию работе, опубликованной в Nature, ведущей остаётся версия о неудачном взрыве сверхновой. На пороге взрыва звезда превратилась в чёрную дыру или нейтронную звезду. Исходная звезда массой около 20 солнечных сожгла всё топливо и коллапсировала без взрыва. Также источником уникального может оказаться чёрная дыра средней массы, поглощающая звёзды.

В любом случае, у учёных появились данные для расширения ранее предложенных моделей поведения нейтронных звёзд, чёрных дыр и сверхновых, а также для более полного описания эволюции останков звёзд после их смерти.

В ранней Вселенной нашли слишком большую сверхмассивную чёрную дыру

Группа астрономов сообщила об открытии сверхмассивной чёрной дыры (СЧД), которая образовалась всего через 500 млн лет после Большого взрыва. Никакая сверхновая в те времена не могла бы породить СЧД таких чудовищных размеров. Остаётся альтернативная версия о другом пути появления зародыша чёрной дыры, но к ней тоже есть вопросы.

 Источник изображения: Chandra / JWST

Источник изображения: Chandra / JWST

Сделать удивительное открытие помог космический телескоп «Джеймс Уэбб» (JWST). Но даже ему понадобилась помощь, чтобы заглянуть так далеко в раннюю Вселенную. Во-первых, астрономы использовали эффект гравитационного линзирования, чтобы ещё сильнее усилить свет от далёких звёзд. Во-вторых, для поиска чёрных дыр в далёких галактиках был задействован рентгеновский телескоп «Чандра» (Chandra). «Уэбб» искал подходящие галактики и измерял их красное смещение, а «Чандра» ловила рентгеновское излучение, которое чёрные дыры излучают в процессе питания веществом.

Из 11 кандидатов почти идеально (с отклонением 4 сигма) подошла галактика UHZ1 с красным смещением около 10. Она располагалась за массивным скоплением галактик Abell 2744, которое обеспечило «четырёхкратный зум». Измерения и расчёты показали, что в центре UHZ1 за слоями пыли и газа скрывается сверхмассивная чёрная дыра с массой порядка 10 млн солнечных. Масса СЧД равнялась массе всего остального вещества в галактике. Как она там выросла до таких размеров и к моменту наблюдения света от неё — это стало загадкой. Масса всех наблюдаемых в местной Вселенной чёрных дыр равна примерно 0,1 % массы вещества в галактиках, включая нашу.

Считается, что первые чёрные дыры стали появляться через 200 млн лет после Большого взрыва. Тем самым чёрной дыре в UHZ1 понадобилось всего 300 млн лет чтобы разрастись до колоссальных размеров. Обычное слияние к такому не могло привести, поскольку небольшие чёрные дыры не обладают необходимым гравитационным потенциалом. Развиться из фазы суперновой и очень и очень большой звезды в ранней Вселенной — это тоже не вариант. Такая чёрная дыра должна была бы питаться с удвоенной силой, что теоретически возможно, но практически маловероятно.

Остаётся последний вариант, который более-менее укладывается в наше понимание процессов во Вселенной. Предполагается, что зародыши СЧД могут также образовываться при коллапсе плотных газовых облаков в ранней Вселенной. В таком случае зародыш СЧД UHZ1 мог быть достаточно большим, чтобы вырасти до наблюдаемой в галактике черной дыры. Темп его роста всё ещё отвечает кормлению по пределу Эддингтона, благодаря которому мы можем рассчитать границы масс чёрных дыр. Такой объект обнаружен пока в единственном экземпляре во Вселенной, и это не позволяет говорить о тенденции.

Учёные призывают с осторожностью относиться к полученным результатам. Научное сообщество также демонстрирует осторожность к сделанному наблюдению. Так, первоначально статья об открытии появилась на сайте arxiv.org 24 мая 2023 года. В сентябре она была подвергнута очередной ревизии и только вчера её опубликовали в Nature Astronomy.

Кстати, новое и более обширное исследование по открытиям «Уэбба» в ранней Вселенной говорит о том, что данные о галактиках-переростках в те времена несколько преувеличены. Всё же, они встречаются существенно реже и не такие массивные, чем было сказано после первых наблюдений «Уэбба».

Чёрная дыра в центре галактики M87 вращается, определили учёные после 22 лет наблюдений

Сверхмассивная чёрная дыра в центре галактики M87 вращается, в чём учёные убедились после 22 лет наблюдений за этим объектом. Своим джетом она как фехтовальщик мечом описывает в пространстве окружность с размахом до 10 °. И этот «меч» длиною в 5 тыс. световых лет так же смертоносен для всего живого, что попадётся ему на пути, как и оружие в руках опытного бойца.

 Вращение чёрной дыры в представлении художника. Источник изображения: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse and Zhejiang Lab

Вращение чёрной дыры в представлении художника. Источник изображения: Yuzhu Cui et al. 2023, Intouchable Lab@Openverse and Zhejiang Lab

Джет или струя вещества, бьющая из центра сверхмассивной чёрной дыры в галактике M87, был замечен в 1918 году астрономом Хебером Кёртисом (Heber Curtis). Изображение струи впервые получили с помощью орбитального телескопа «Хаббл». Более того, испускающая этот джет чёрная дыра стала первой, изображение которой удалось получить при непосредственном наблюдении за объектом. Точнее, телескоп «Горизонта событий» — сеть из разбросанных по всей Земле радиотелескопов — получил изображение тени этой чёрной дыры или её аккреционного диска, ведь сама дыра за свои пределы ничего не выпускает.

 Источник изображения:  NASA, ESA

Изображение джета M87, полученное телескопом «Хаббл». Источник изображения: NASA, ESA

«После успешной визуализации чёрной дыры в этой галактике с помощью телескопа Event Horizon Telescope вопрос о том, вращается эта черная дыра или нет, занимал центральное место в умах учёных, — рассказал астрофизик и соавтор исследования Кадзухиро Хада (Kazuhiro Hada) из Национальной астрономической обсерватории Японии. — Теперь ожидание переросло в уверенность. Эта чудовищная чёрная дыра действительно вращается».

Для анализа поведения чёрной дыры M87 учёные проанализировали 170 наблюдений за ней в период с 2000 по 2022 год, проведённые более чем на 200 телескопах. О вращении этой чёрной дыры учёные могли судить только по смене положения её джета. Вращающаяся чёрная дыра искажает пространство-время вокруг себя — происходит так называемое увлечение инерциальных систем отсчёта. Тем самым направление джета и ориентация аккреционного диска изменяются вслед за искажениями пространства-времени. Для внешнего наблюдателя это выглядит как отклонение джета на какой-то угол.

 Источник изображения: Nature

Данные из новой работы. Источник изображения: Nature

Наблюдения помогли определить угол отклонения струи, который составил примерно 10 °. Своё движение джет совершает за 11 лет, после чего цикл начинается снова.

С какой скоростью вращается эта чёрная дыра, масса которой примерно в 6 млрд раз превышает массу Солнца, учёным ещё предстоит выяснить. Большинство чёрных дыр вращается с околосветовой скоростью, но уже обнаружены чёрные дыры, скорость вращения которых может падать до 50 % от скорости света.


window-new
Soft
Hard
Тренды 🔥
Новая статья: Songs of Conquest — песнь величия. Рецензия 7 ч.
В ранний доступ Steam ворвался олдскульный шутер Selaco на движке классических Doom — с перестрелками и умными врагами в духе F.E.A.R. 10 ч.
Warhorse официально подтвердила перевод на русский язык в Kingdom Come: Deliverance 2 11 ч.
Perplexity AI превратит поисковую выдачу в веб-страницу, которой удобно делиться с другими 11 ч.
Google добавила редактирование RCS-сообщений и другие полезные функции в Android 12 ч.
Эндгейм подкрался незаметно: авторы перспективного «дьяблоида» Wolcen: Lords of Mayhem решили забросить разработку всего через четыре года после релиза 12 ч.
Глава Take-Two Interactive уклонился от ответа, выйдет ли GTA VI на ПК 13 ч.
Twitch уволил всех членов совета по безопасности — их заменят избранные пользователи 13 ч.
Google обвинила в странных ответах поискового ИИ самих пользователей и недостаток обучающих данных 15 ч.
Слухи: Konami скоро объявит о переносе Metal Gear Solid Delta: Snake Eater на 2025 год 16 ч.
Sony заявила о снижении капитальных затрат на 30 % в полупроводниковом бизнесе 4 мин.
Китайский подрядчик Apple обвиняется на Тайване в незаконной охоте за персоналом 53 мин.
Samsung будет выпускать для AMD передовые 3-нм чипы с GAA-транзисторами 5 ч.
Российские компании продолжают закупать ИИ-ускорители Nvidia, несмотря на санкции, но затраты растут 7 ч.
США снова передумали повышать пошлины на видеокарты из Китая 8 ч.
На МКС сломалась одна из систем жизнеобеспечения 8 ч.
Учёные создали тончайшую линзу в мире — всего три атома в толщину 11 ч.
Квартальная выручка Pure Storage превысила ожидания аналитиков — теперь компания надеется продавать больше СХД гиперскейлерам 11 ч.
Представлены первые видеокарты Radeon с разъёмом 12+4-pin — ASRock Radeon RX 7900 XTX WS и RX 7900 XT WS для рабочих станций 11 ч.
В России начались продажи ноутбуков Digma Pro Fortis с процессорами Intel Core и быстрыми SSD 12 ч.