Оригинал материала: https://3dnews.ru/1097834

Учёные создали синаптический транзистор для имитации работы головного мозга человека

Не секрет, что головной мозг работает не так, как электронные цепи компьютера. У них разная архитектура, сблизить которую мечтает не одно поколение учёных. Мозг хранит и обрабатывает данные в одном месте, тогда как компьютер постоянно пересылает их между процессором и банками памяти. Главная проблема в отсутствии подходящей ячейки памяти, которая одновременно играла бы роль транзистора, с чем обещают помочь учёные из США.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Команда учёных из Северо-Западного университета (Northwestern University), Бостонского колледжа (Boston College) и Массачусетского технологического института (MIT) сообщила, что они создали и испытали так называемый синаптический транзистор, который оказался способен работать в составе нейронных сетей с ассоциативным обучением. Главным преимуществом разработки учёные считают способность транзистора работать при комнатной температуре с предельно маленьким потреблением 20 пВт (пиковатт).

В живой нервной ткани синапс представляет собой зазор между окончанием одного нейрона и началом другого (если речь идёт о головном или спинном мозге). В этом зазоре происходят биохимические реакции, которые отвечают за передачу нервного импульса дальше или за его блокировку. Представленный учёными транзистор выполняет сходную функцию, но в своей работе он использует физические явления и процессы.

По большому счёту разработка относится к сфере муаровых квантовых материалов. Во многих случаях такие материалы работают в условиях криогенного охлаждения. Поэтому для команды исследователей было важно показать эффект при комнатной температуре, с чем они успешно справились.

Транзистор, если его так можно назвать, представляет собой два наложенных друг на друга слоя материала атомарной толщины, слегка смещённых друг относительно друга в горизонтальной плоскости. Один слой — это графен, а второй слой — это нитрид бора с гексагональной решёткой. Поворот одного из них на определённый угол создаёт муаровый узор из двух совмещённых структур, и в этом всё волшебство. Правильные углы, при которых проявляются отчётливые взаимодействия, даже принято называть магическими.

При определённых углах поворота кулоновские взаимодействия между двумя материалами переходят в разряд экзотических электрических взаимодействий, которые в обычных материалах не встречаются, что открывает потенциал для использования таких структур в будущей электронике с непознанной до конца функциональностью.

К чести исследователей, они пошли дальше и создали на основе представленных условных транзисторных переходов ряд нейронных цепей, которые показали способность к ассоциативному обучению. Экспериментальные схемы обучались распознавать группы цифр в бинарном кодировании, с чем они успешно справились. Например, нейронные цепи отделили комбинации 000 и 111 от 101, показав ассоциативную связь первых и их отличие от третьей комбинации. Таким образом, сообщают в аннотации к статье в журнале Nature учёные, «муаровый синаптический транзистор обеспечивает эффективные схемы вычислений в памяти и [обещает] передовые аппаратные ускорители для искусственного интеллекта и машинного обучения».



Оригинал материала: https://3dnews.ru/1097834