Сегодня 28 августа 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

Физики впервые «сфотографировали» в капле воды возбуждённый рентгеном электрон

Американские учёные только что прорубили окно в новую область экспериментальной физики. Они смогли получить энергетический образ движения электрона вокруг атома водорода в капле воды ещё до того, как атом пришёл в движение. До сих пор у учёных не было инструментов для подобной детализации процессов в веществе, что раскроет больше деталей о физике и химии многих процессов и, особенно, о радиационном воздействии на живые клетки.

 Источник изображений: PNNL

Источник изображений: PNNL

В эксперименте, отдалённо похожем на съёмку замедленного видео, учёные выделили энергетическое движение электрона, одновременно «заморозив» движение гораздо более крупного атома, вокруг которого вращался целевой электрон, сделав это в образце обычной жидкой воды. О своей работе учёные сообщили в статье в журнале Science. Работа в основном была направлена на изучение высокоэнергетического излучения на живые клетки, что нужно для космоса, радиотерапии опухолей и не только.

«Химические реакции, вызванные излучением, которые мы хотим изучить, являются результатом электронного отклика мишени, который происходит в аттосекундном масштабе времени», — пояснила Линда Янг (Linda Young), старший автор работы и заслуженный научный сотрудник Аргоннской национальной лаборатории. — До сих пор радиохимики могли определять события только в пикосекундном масштабе времени, что в миллион раз медленнее, чем аттосекунда. Это всё равно, что сказать "я родился, а потом умер". Вы хотели бы знать, что происходит в промежутке? Это то, что мы сейчас можем сделать».

Чтобы добиться результата, межведомственная группа учёных из нескольких национальных лабораторий Министерства энергетики США, а также университетов США и Германии объединила эксперименты и теорию, чтобы в режиме реального времени выявить последствия воздействия ионизирующего излучения от источника рентгеновского излучения на вещество. Исследование проводилось при поддержке Центра пограничных энергетических исследований межфазной динамики в радиоактивных средах и материалах (IDREAM), с финансовой поддержкой Министерства энергетики США в штаб-квартире в Тихоокеанской Северо-Западной национальной лаборатории (PNNL).

Не секрет, что субатомные частицы, например, электроны, движутся так быстро, что для фиксации их действий требуется датчик, способный измерять время в аттосекундах. Это настолько быстро (или мало), что в каждой секунде, например, больше аттосекунд, чем прошло секунд за всю историю Вселенной.

Проведённое авторами исследование опирается на открытие и создание аттосекундных рентгеновских лазеров на свободных электронах, за что в прошлом году, в частности, была присуждена Нобелевская премия по физике. В Национальной ускорительной лаборатории SLAC есть источник такого света (LCLS), чем воспользовались экспериментаторы.

 Экспериментальная установка, создающая тончаштую плёнку воды шириной около 1 см

Экспериментальная установка, создающая тончайшую плёнку воды шириной около 1 см

В качестве тестового образца для эксперимента была выбрана обычная жидкая вода. Первый аттосекундный импульс возбуждал электроны, а второй измерял отклик. Это позволило отреагировать датчикам настолько быстро, что возбуждённое состояние электрона проявило себя ещё до того, как атом водорода в молекуле пришёл в движение. Раньше в процессе подобного наблюдения с помощью импульсов большей длительности картина была настолько смазанной, что учёные предполагали существование ряда промежуточных состояний. Аттосекундный лазер показал, что промежуточных состояний нет — это всё миражи или помехи.

«Теперь у нас есть инструмент, с помощью которого, в принципе, вы можете следить за движением электронов и видеть только что ионизированные молекулы по мере их образования в режиме реального времени», — резюмировали достижение авторы исследования.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
Гендиректор Epic Games: в проблемах с оптимизацией игр на Unreal Engine 5 виноват не движок, а разработчики 10 мин.
Разработчик Dread Delusion анонсировал Entropy — олдскульную пошаговую ролевую игру про актёра театра, на мир которого напали демоны 40 мин.
«Яндекс» запустил новую ИИ-модель YandexGPT 5.1 Pro, но доступна она пока лишь бизнесу 2 ч.
«Это точно не конец»: создатель Clair Obscur: Expedition 33 намекнул на дополнение и сиквелы 2 ч.
Google заявила о своей непричастности к сбоям Google Meet в России 4 ч.
«Сократик»: создание презентаций за минуту с помощью ИИ 5 ч.
Bethesda подтвердила работу над вторым сюжетным дополнением к Starfield и геймплейными улучшениями, о которых просили игроки 6 ч.
Обнаружен первый ИИ-вирус — он запускает на локальном ПК нейросеть от OpenAI и просит её написать вредоносный код 6 ч.
Windows 11 научилась передавать стереозвук на Bluetooth-наушники во время звонков 14 ч.
Хакер сделал конкурента ChatGPT соучастником вымогательской кампании: ИИ искал уязвимости и писал угрозы 15 ч.
Китайский бизнес переходит на подержанные ускорители NVIDIA A100 и H100 из-за проблем с поставками H20 58 мин.
Европейские продажи Tesla рухнули на 40 %, а у китайской BYD — утроились 2 ч.
Российский синхротрон СКИФ стал ближе к научной работе: в его бустере запустили циркулирующий пучок электронов 2 ч.
Рекордные продажи NVIDIA не впечатлили инвесторов из-за слабой выручки в сегменте ЦОД и неопределённости с поставками в Китай 2 ч.
Еще один крупный автопроизводитель отказался от грандиозных планов на электромобили 2 ч.
Луна эффектно вклинилась в кадр во время съёмки Солнца орбитальным коронографом 3 ч.
GlobalFoundries заявила, что не будет обменивать субсидии США на акции по примеру Intel 3 ч.
Samsung анонсировала Galaxy Event — премьера новой версии Galaxy S25 и ИИ-планшетов состоится 4 сентября 4 ч.
Tesla завтра представит загадочную новинку 4 ч.
До 30 лет тюрьмы за хищение 2-нм секретов TSMC: троим фигурантам предъявлены обвинения 5 ч.