Сегодня 18 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Мониторы и проекторы

3D дисплеи. Часть 2

Автор: Cергей Книгин

МУЛЬТИВИДОВЫЕ (MULTIVIEW) 3D ДИСПЛЕИ

Как следует из определения, данного в первой части статьи, мультивидовые 3D дисплеи (далее, для краткости М3D) воспроизводят объемное изображение в виде нескольких последовательных ракурсов объемной сцены, любые два из которых составляют стереопару.

ПРИНЦИП: Разделение объема воспроизведения несколькими условными вертикальными плоскостями, проходящими через центр экрана. В каждой части разбитого плоскостями пространства наблюдается свой вид (ракурс) объемной сцены.


Поскольку M3D являются развитием идеи стереодисплея, то для их построения применимы те же технологии параллакс-барьеров и линзовых растров, только за каждой линзой должно располагаться столько пикселов, сколько ракурсов изображения мы хотим получить. Очевидно, что существующие сегодня LCD панели не позволяют получить по такой схеме приличный M3D.

Возьмем 17" монитор, имеющий 1280х1024 пиксела размером 0,27мм. Если мы хотим получить 5 ракурсов, придется взять линзовый растр с шагом 1,35мм, а горизонтальное разрешение станет аж целых 256 пикселов! Не впечатляет…

Но есть технология, позволяющая использовать массив пикселов лучшим способом. Это голографические оптические элементы (Holographic Optical Elements - HOE ). Перед LCD панелью помещается пленка, состоящая из миниатюрных голограмм, каждая из которых закрывает один пиксел и направляет проходящий свет в одном из заданных направлений.


Голограммы, формирующие столько различных направлений, сколько нужно ракурсов, объединяются в патерн, повторяющийся по всей поверхности экрана. Для получения четырех ракурсов используются группы 2х2 пиксела, для девяти ракурсов - 3х3, т.е. для того же 17" монитора разрешение будет 640х512 и 427х341 пиксел соответственно. Конечно, для работы с текстом такой монитор уже не годится, а вот графика и видео будут выглядеть вполне прилично (для сравнения: видеомагнитофон формата VHS воспроизводит изображение с разрешением примерно 384х288 пикселов). Учитывая, что разрешение LCD панелей непрерывно растет, а производство голографической пленки реально уже сейчас, можно ожидать появление серийных моделей M3D в недалеком будущем.

Но вот действительно важный вопрос: а сколько ракурсов необходимо? Ответ зависит от конкретного назначения M3D и поддается точному рассчету. Для комфортного просмотра видео бывает достаточно 4-6 ракурсов, тогда как для серьезных применений, таких как 3D-томография и рентген, графические рабочие станции CAD/CAM, отображение оперативной обстановки (авиадиспетчерские, аварийно-спасательные службы) и т.д., может, понадобится от 40 до 150 ракурсов. Известно несколько прототипов M3D с числом ракурсов более 40.


В одном из них электромеханическая зеркальная система разворачивает пакет лучей от 48 полупроводниковых лазеров, по одному на каждый ракурс, в другом около 100 ракурсов формируются с помощью оптических волокон толщиной 10 микрон, соединенных в упорядоченный оптический кабель, по которому изображение от нескольких серийных видеопроекторов подводится к линзовому растру.

Проблема M3D состоит не столько в изготовлении самого устройства (например, можно взять сколько нужно проекторов и экран из двух совмещенных линзовых растров - очень старый патент), сколько в получении необходимой для отображения информации.

Даже стереовидеокамеры до сих пор остаются экзотикой, восьмиракурсная видеокамера применялась в прототипе многоракурсной телевизионной системы НИКФИ, а видеокамеру с большим числом ракурсов представить сложно. Настолько же проблематична запись и передача по каналам связи такого сигнала.

Разрабатываются два диаметрально противоположных подхода к этой проблеме. Первый предполагает сжатие многоракурсной информации на основе межракурсных разностей (практически та же MPEG-технология) с последующей распаковкой при воспроизведении, второй - восстановление промежуточных ракурсов из стереопары.

Прототип системы второго типа с четырьмя видеопроекторами, ретрорефлективным экраном и компьютером, вычисляющим промежуточные ракурсы с помощью нейросетевых алгоритмов был разработан и успешно продемонстрирован компанией НейрОК Оптикс. Восстановление большего числа ракурсов требует существенных вычислительных мощностей. Еще большие ресурсы необходимы для построения множества ракурсов 3D сцены, описанной набором векторов или массивом вокселов.


ПЛЮСЫ:

  • широкая зона стереоэффекта;
  • большая глубина объема воспроизведения;
  • возможность "оглядывания" и динамического параллакса;
  • наличие контента (потенциально);
  • возможность отображения непрозрачных объектов, т.е., потенциально, реалистичная
  • графика и видео

МИНУСЫ:

  • техническая сложность и себестоимость быстро возрастают с увеличением числа воспроизводимых ракурсов;
  • небольшой угол обзора (от 24 до 50 градусов против 160 и более у обычных мониторов);
  • требуется большая скорость потока данных (кратное числу ракурсов увеличение от моно) или существенный объем вычислений для кодирования и декодирования данных;
  • отсутствует программное обеспечение

Вряд ли в ближайшие год - два стоит ожидать появления недорогих серийных моделей мультивидовых 3D дисплеев "для дома, для семьи", хотя многие серьезные производители дисплеев имеют свои прототипы . Например, линейка дисплеев с 3, 5, 7, и 9-ю ракурсами у Philips, шестнадцатиракурсный дисплей у Samsung.

ГОЛОГРАФИЧЕСКИЕ 3D ДИСПЛЕИ

В первой части мы определили, что голографические 3D дисплеи (далее H3D) воспроизводят непрерывное световое поле, соответствующее световому полю реальной 3D сцены. Однако, современная техника немыслима без цифровой обработки сигналов, стало быть, любая непрерывная функция с некоторой точностью апроксимируется рядом дискретных значений. Световое поле не исключение, поэтому H3D можно рассматривать как дальнейшее развитие мультивидовых дисплеев с очень большим количеством воспроизводимых ракурсов.

ПРИНЦИП: Разделение объема воспроизведения множеством условных вертикальных плоскостей, проходящих через центр экрана. В каждой части разбитого плоскостями пространства наблюдается свой вид (ракурс) объемной сцены.

Обычно, когда речь заходит о H3D, имеют в виду устройство, способное воспроизводить на некоемом материале подобие традиционной голограммы, то есть вычислять и отображать фиксируемую ей в виде дифракционных структур интерференционную картину светового поля, причем делать это в реальном времени. Такой подход не учитывает, что каждый малый участок голограммы представляет из себя дифракционную решетку, выполняющую роль отклоняющего элемента и нет нужды каждый раз, когда нужно изменить угол отклонения луча, рассчитывать и отображать ее. Самое удивительное, что есть ученые, разрабатывающие это финансово и информационно сверхзатратное направление. Например, американцы из Массачусетского технологического разработали прототип, в котором воспроизводится изображение, рассчитанное на компьютере. Голограмма формируется с помощью акустооптического модулятора: луч лазера модулируется акустическими колебаниями, воздействующими на кристалл, который расположен перед фокусирующей линзой.


Прорисовка изображения выполняется механической зеркальной разверткой. Для монохромной картинки размером 15 x 15 x 20 см требуется поток данных около 2 гигапикселов в секунду. Японцы пытаются воспроизводить голограммы с помощью проекционных LCD матриц (используются в видеопроекторах), каждая из которых воспроизводит небольшой отдельный участок голограммы. Поскольку диагональ таких матриц не превышает 1,8 дюйма, для получения голограммы нужной площади пришлось использовать множественные конфигурации и устройства сведения для объединения различных частей голограммы. Поток данных, требуемый для воссоздания полноценного образа, достигает приблизительно одного терабайта в секунду. Монохроматическая голограмма с площадью проекции 1 кв.см - это пока максимум, чего удалось добиться исследователям.

Интересна разработка, названная ее авторами "офисный голографический принтер". Хотя это устройство не имеет непосредственного отношения к 3D дисплеям, полученные результаты могут быть использованы в будущем для создания H3D.


Принтер позволяет печатать на фоточувствительном материале однопроходные голограммы, качество которых во многих случаях превосходит качество традиционных голограмм. Голограмма получается путем последовательной экспозиции узких полосок фотоматериала через щелевую маску. На каждой полоске по традиционной технологии получения голограмм фиксируется образ цилиндрической линзы, за которой располагается LCD матрица с выведенным на нее специально подготовленным изображением. В результате получается голограмма линзового растра очень высокого разрешения (до 250 lpi), идеально совмещенного с изображением, содержащим до 150 ракурсов предварительно отснятой или смоделированной на компьютере 3D сцены.

Исследования, проведенные при разработке голографического принтера, показали, что голограмма 3D объекта может быть рассчитана как совокупность голографических образов составляющих его вокселей. Образ вокселя представляет из себя фиксированный паттерн, зависящий только от "глубины залегания", т.е. Z-координаты вокселя и не зависящий от координат X и Y. Паттерны для всего диапазона значений Z могут быть рассчитаны заранее и помещены в таблицу, откуда будут извлекаться при выводе в реальном времени с минимальным количеством вычислительных операций. Паттерны для систем на основе линзовых растров имеют простейший вид группы вертикальных штрихов и могут рассчитываться непосредственно в процессе вывода изображения. Отличие данного метода от классической голограммы состоит в том, что формируются изображения, имеющие только горизонтальный параллакс (как, впрочем, и у всех дисплеев, описанных выше). Принцип формирования образа вокселя P из опорного пучка света S классической голограммой показан ниже.


Можно заметить, что чем дальше от поверхности находится воксель, тем большая площадь голограммы принимает участие в его формировании.

ПЛЮСЫ:

  • самое реалистичное 3D изображение, обладающее всеми оптическими свойствами отображаемого реального объекта

МИНУСЫ:

  • техническая сложность на пределе современных возможностей аппаратуры, вычислительных
  • мощностей хватает только для статических изображений

Как говорил классик в другом месте и по другому поводу " Узок круг этих революционеров. Страшно далеки они от народа". Именно так обстоит дело с голографическими 3D дисплеями. К счастью, для определенного круга задач существуют другие решения, позволяющие получить реальное 3D. Это волюметрические 3D дисплеи, о которых пойдет речь в заключительной части статьи.

 
 
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
Состоялся релиз новой версии операционной системы Kaspersky Thin Client для тонких клиентов 2 ч.
Первый сторонний магазин iOS-приложений стал доступен в Евросоюзе 3 ч.
В России открыли Ассоциацию развития киберспортивной инфраструктуры — владельцы компьютерных клубов хотят добиться налоговых льгот 3 ч.
OpenAI GPT-4 достигла уровня врачей-офтальмологов в диагностике глазных заболеваний 4 ч.
Российский суд оштрафовал Twitch и Pinterest — каждого на 1 млн рублей 4 ч.
Игровой движок Unigine вернулся в реестр российского ПО благодаря усилиям разработчиков 4 ч.
Bethesda удалила Denuvo из Ghostwire: Tokyo, но умолчала об этом 5 ч.
Т1 и МФТИ предложат российскому бизнесу решения на базе квантовых алгоритмов 5 ч.
TikTok начал тестировать Notes — конкурента Instagram 5 ч.
Необычный платформер-головоломка Schim о потерявшем своего человека духе выйдет из тени в июле — дата релиза и новый трейлер 7 ч.
Google запустила вторую волну увольнений, но сотрудникам предложат попробоваться на другие вакансии 24 мин.
Nothing наделит все свои наушники поддержкой ИИ-бота ChatGPT 33 мин.
Сбой Microsoft Azure в Южной Африке был вызван массовым повреждением подводных кабелей сразу на двух побережьях континента 35 мин.
Huawei выпустила мобильный процессор Kirin 9010 — он оказался быстрее Qualcomm Snapdragon 8 Gen 1 41 мин.
Nothing представила беспроводные наушники Ear и Ear (a) с автономностью более 40 часов, шумоподавлением и ChatGPT 2 ч.
ИИ научился точно определять источник рака по клеткам метастаза — это увеличит выживаемость пациентов 2 ч.
Китайские Dongfeng и Chery задумались о локализации выпуска электромобилей в Европе 4 ч.
«Ангару» снова запустят с Восточного только в 2027 году, зато сразу с кораблём «Орёл» 4 ч.
Компания Gagar>n представила OCP-серверы «Оракул Gen 3» и «Простор Gen 1» на базе Intel Xeon 4 ч.
Toyota готовит электрический кроссовер Highlander с тремя рядами сидений 4 ч.