Сегодня 01 июня 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → дыра
Быстрый переход

Первичные чёрные дыры — плохие кандидаты на роль тёмной материи, объяснили японские учёные

Астрофизики из Исследовательского центра ранней Вселенной (RESCEU) и Института физики и математики Вселенной им. Кавли (Kavli IPMU, WPI) Токийского университета представили новую модель эволюции первичных чёрных дыр. Эти миниатюрные объекты, как считается, могли бы играть роль тёмной материи, став своего рода центрами кристаллизации вещества и инициаторами появления всего в нашей Вселенной — звёзд, галактик и прочего. Японцы в этом усомнились.

 Источник изображения: ESA/ Planck Collaboration

Коротковолновые события ПЧД с сильнейшей амплитудой могли влиять на реликтовое излучение. Источник изображения: ESA

Согласно распространённой в научной среде гипотезе, первичные чёрные дыры возникли на этапе после Большого взрыва в процессе быстрого (инфляционного) расширения Вселенной, когда из объекта меньше атома она расширилась на 25 порядков. В процессе этого Вселенная перестала быть однородной. Сегодня мы наблюдаем следы этой неоднородности в виде реликтового излучения — космического сверхвысокочастотного микроволнового фона. Изучение слабых отклонений в реликтовом излучении может дать подсказку о происходящих 13,8 млрд лет назад процессах на самых ранних его этапах. Именно этим занялись исследователи из Японии.

Учёные применили к наблюдаемым данным хорошо изученную квантовую теорию поля. Эта теория помогает нам разбираться с поведением элементарных частиц, что также хорошо согласуется с измерениями. Перенос квантовой теории поля на космологию показал, что первичные чёрные дыры (ПЧД) должны были оказывать измеряемое влияние на реликтовое излучение. Сами по себе они неспособны влиять на сверхвысокочастотные волны, но в достаточном количестве первичные чёрные дыры должны были бы в отдельных случаях оказать когерентное влияние на микроволновый фон — усилить амплитуду отдельных волн излучения.

Если бы первичных чёрных дыр во Вселенной было много, то отклонений в показаниях реликтового излучения было бы намного больше. Тогда, в частности, первичные чёрные дыры можно было бы рассматривать в качестве кандидатов на роль тёмной материи. Но этого не наблюдается, и квантовая теория поля хорошо объясняет, почему это так. Сейчас учёные ожидают новых данных наблюдений гравитационно-волновых обсерваторий LIGO в США, Virgo в Италии и KAGRA в Японии, которые, в том числе, находятся в разгаре поисков следов первичных чёрных дыр. И у них есть немалые шансы получить подтверждение своей модели.

Звёзды могут пропускать стадию сверхновой и сразу превращаться в чёрную дыру

За последние семь лет с неба пропали свыше 800 звёзд. Некоторые из них исчезали за считанные часы — в краткие перерывы между наблюдениями. Учёные давно начали подозревать, что при определённых обстоятельствах звёзды могут коллапсировать сразу в чёрные дыры без превращения в сверхновую и выброса энергии. Но надёжных доказательств этому не было. Новая работа по изучению двойной системы с чёрной дырой и голубым гигантом обещает пролить свет на исчезающие звёзды.

 Художественное представление системы  Источник изображения: ESO/L. Calçada

Художественное представление системы VFTS 243. Источник изображения: ESO/L. Calçada

Астрофизики из Копенгагенского университета провели детальное наблюдение за системой VFTS 243 в Большом Магеллановом Облаке, удалённой на 160 тыс. световых лет от Земли. В системе находится одна чёрная дыра массой около 10 солнечных и голубой гигант с массой 25 солнечных масс. Чёрная дыра, как показывают наблюдения и расчёты, образовалась в результате коллапса другой массивной звезды в конце её жизни. Вот только в системе нет следов взрыва сверхновой, которая, как считается, ставит точку в жизни звезды.

«Обычно вспышки сверхновых в звёздных системах можно определить массой способов после того, как они произошли, — поясняют авторы исследования. — Но, несмотря на то, что VFTS 243 содержит звезду, которая коллапсировала в чёрную дыру, следов взрыва нигде не обнаружено. VFTS 243 — необычная система. Орбита системы практически не изменилась с момента коллапса звезды в чёрную дыру».

В опубликованной в журнале Physical Review Letters работе исследователи пишут, что чёрная дыра в системе VFTS 243, вероятно, образовалась мгновенно, причём выброс энергии в основном пришёлся на нейтрино. Это означает, что стадией сверхновой можно было пренебречь.

«Если бы кто-то стоял и смотрел на обычную переживающую полный коллапс звезду, это было бы похоже на то, что в один момент звезда внезапно гаснет и исчезает с небес, — говоря авторы работы. — Коллапс настолько полный, что взрыва не происходит, ничто не улетучивается, и никто не увидит яркой сверхновой в ночном небе».

Проделанная работа не ставит точку в деле о неудавшихся сверхновых. Но она заставляет по-новому взглянуть на аналогичные случаи, благо таких может быть достаточно много для уточнения наших знаний о финальных этапах эволюции звёзд.

Чёрные дыры ведут себя как «Звёзды смерти» — их смертоносные джеты могут быстро менять направления

Джеты чёрных дыр — субсветовые выбросы частиц и вспышки сфокусированного гамма и рентгеновского излучения — смертельно опасны на расстоянии до нескольких тысяч световых лет. И если этого мало, то учёные выяснили, что джеты оказались непредсказуемыми. Наблюдение за 16 чёрными дырами в центрах галактик показало, что направление смертоносного луча колоссальной мощности может сравнительно быстро измениться на угол до 90 °.

 Вращение чёрной дыры в представлении художника. Источник изображения: Lab@Openverse and Zhejiang Lab

Вращение чёрной дыры в представлении художника. Источник изображения: Lab@Openverse and Zhejiang Lab

Данные получены международной группой астрономов с использованием космической рентгеновской обсерватории NASA «Чандра» (Chandra) и радиоинтерферометра Very Long Baseline Array (VLBA). Учёные искали следы брешей в газопылевых облаках вокруг или вблизи чёрных дыр — это были следы ударов предыдущих джетов, а также активные джеты. Тем самым удалось проследить, как менялись направления высокоэнергетических струй в течение времени.

«Мы обнаружили, что около трети лучей теперь направлены в совершенно иных направлениях, чем раньше, — рассказал астрофизик Франческо Убертози (Francesco Ubertosi) из Болонского университета в Италии. — Эти чёрные дыры "Звезды смерти" поворачиваются и указывают на новые цели, подобно вымышленной космической станции из "Звёздных войн"».

Около трети изученных джетов (30–38 %), по-видимому, значительно изменили направление (более чем на 45 °) за период в 10 млн лет или меньше. Похоже, что это относительно обычное явление для сверхмассивных чёрных дыр. В ряде случаев наблюдались изменения направления почти на 90 °. Самое короткое время, за которое происходила перестройка на другую цель, составило всего около 1 млн лет. В космическом масштабе это довольно быстрая смена направления.

«Учитывая, что возраст этих чёрных дыр, вероятно, превышает 10 млрд лет, мы считаем, что значительное изменение направления в течение нескольких миллионов лет является быстрым, — заявил астрофизик Геррит Шелленбергер (Gerrit Schellenberger) из Центра астрофизики Гарварда и Смитсоновского института (CfA) в США. — Изменение направления лучей гигантской чёрной дыры примерно за миллион лет аналогично изменению направления движения нового линкора в течение нескольких минут».

 Исследование истории джетов чёрной дыры в рентгеновском и радиодиапазоне

Исследование истории джетов чёрной дыры в рентгеновском и радиодиапазоне. Источник изображения: NASA/CXC/Univ. of Bologna

Поскольку эти струи затрудняют слияние газа и формирование звезд, любые изменения в их ориентации имеют важные последствия для состава окружающих их галактик. Очевидно, последствия будут также для биологической жизни, если она попадёт под такой «прожектор». Остаётся только радоваться, что подобные объекты очень и очень далеко от Солнечной системы. Впрочем, нас могут подстерегать другие опасности — вспышки сверхновых, нейтронные звёзды или килоновы, которые тоже выбрасывают смертоносные джеты.

Поглощение чёрными дырами звёздного вещества выдало их скорость вращения

Похоже, учёные разработали новые методы оценки параметров сверхмассивных чёрных дыр. У науки не так много возможностей, чтобы измерить те или иные характеристики этих таинственных объектов, и любой новый метод — это находка, ценность которой трудно переоценить. Оказалось, что агрессия чёрных дыр в отношении разрываемых ими звёзд в процессе поглощения вещества позволяет вычислить скорость их вращения.

 Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Звезда может подлететь к чёрной дыре с любой точки пространства. Такие события наблюдаются достаточно часто, что отражается в рентгеновских вспышках, когда вещество звезды падает на чёрную дыру. Точнее, на её диск аккреции. Как подозревают учёные, взаимодействие останков звезды с диском аккреции дестабилизирует последний. Это как ударить по вращающемуся волчку — его ось вращения отклонится от вертикального положения и начнёт описывать в пространстве окружность (возникнет прецессия).

Группа учёных из Массачусетского технологического института справедливо предположила, что амплитуда колебания (прецессия) диска аккреции связана со скоростью вращения чёрной дыры. Если можно будет вычислить прецессию, то, зная массу объекта, можно узнать скорость его вращения. Но измерения необходимо проводить длительное время и с высочайшей точностью. Сегодня это ресурсоёмкие исследования. Но в будущем ожидается запуск ряда широкоугольных телескопов нового поколения, которые будут легко фиксировать множественные переходные процессы.

Благодаря наблюдению за квазаром на удалении около одного миллиарда световых лет от нас (по зафиксированной в 2020 году рентгеновской вспышке AT2020ocn), учёные смогли вычислить скорость вращения сверхмассивной чёрной дыры в центре этого активного ядра галактики. Она оказалась примерно на уровне 25 % от скорости света. Само по себе это измерение мало что даёт науке, но многочисленные аналогичные измерения для всех наблюдаемых нами во Вселенной чёрных дыр расскажут об эволюции этих объектов ещё больше, чем мы сегодня знаем.

«Джеймс Уэбб» засёк древнейшее в истории наблюдений столкновение сверхмассивных чёрных дыр, многое объясняющее в эволюции Вселенной

В опубликованной в четверг работе в журнале The Monthly Notices of the Royal Astronomical Society группа астрономов сообщила, что обнаружила древнейшее за всё время наблюдений столкновение сверхмассивных чёрных дыр. Слияние этих колоссальных объектов произошло через 740 млн лет после Большого взрыва. Это стало доказательством, что чёрные дыры с самого начала играли значительную роль в эволюции галактик, и объяснило их стремительный рост в древности.

 Квазар Источник изображения: NASA

Квазар ZS7. Источник изображения: NASA

С появлением невероятного по чувствительности в инфракрасном диапазоне космического телескопа им. Джеймса Уэбба астрономам стали открываться явления в ранней Вселенной, куда предыдущее приборы не могли заглянуть. Это период, когда Вселенная ещё не перешагнула рубеж первого миллиарда существования из нынешних примерно 13,8 млрд лет.

Одной из загадок детства Вселенной стало открытие множества сверхмассивных чёрных дыр до первого миллиарда её развития. Согласно нашим теориям, эти объекты никак не успевали в то время развиться до детектируемых масс от нескольких десятков млн солнечных масс до млрд солнечных масс. На эти процессы должны уходить миллиарды лет, а не сотни миллионов, как показывают данные «Уэбба». Новое наблюдение как раз объясняет, каким образом чёрные дыры могли быстро набирать массу в древности, и это слияния, которых в те времена не должно было бы быть так много, чтобы они оказали влияние на всю последующую эволюцию галактики и самой Вселенной. Похоже, земная наука ошибалась на этот счёт.

«Наши результаты показывают, что слияние является важным путём, по которому чёрные дыры могут быстро расти даже на заре космоса, — сказала в заявлении руководитель исследования и учёный из Кембриджского университета Ханна Юблер (Hannah Übler). — Вместе с другими открытиями «Уэбба» активных массивных чёрных дыр в далёкой Вселенной наши результаты также показывают, что массивные чёрные дыры формировали эволюцию галактик с самого начала».

По факту исследователи засекли признаки активности древнего квазара — активного центра галактики ZS7, в центре которого живёт и быстро питается сверхмассивная чёрная дыра. Спектральной чувствительности «Уэбба» хватило, чтобы увидеть в излучении объекта две составляющие. Обе они оказались сверхмассивными чёрными дырами на грани слияния. Об этом подсказало интенсивное излучение от разогретого газа в аккреционном диске чёрных дыр, а также анализ плотности ионизированного газа.

Масса одного из объектов была определена с достаточной точностью — она составила 50 млн солнечных. Масса второй чёрной дыры оценивается как примерно такая же, но точно учёные сказать не смогли — этому помешало плотное скопление газа на пути излучения.

«Звёздная масса изученной нами системы [галактики ZS7] аналогична массе нашего соседа, Большого Магелланова облака, — поясняют учёные. — Мы можем попытаться представить, как могло бы повлиять на эволюцию сливающихся галактик, если бы в каждой галактике была одна сверхмассивная чёрная дыра, такая же большая, как у нас в Млечном Пути». Тем самым астрономы намекают, что наши модели эволюции галактик явно не учитывают множества аспектов их поведения на заре появления и это надо исследовать.

Кстати, с июня этого года «Уэбб» будет регулярно предоставляться для наблюдений сверхмассивных чёрных дыр, так что новых открытий будет не много, а очень много. Впрочем, больше информации о столкновениях чёрных дыр предоставят учёным гравитационно-волновые обсерватории, первые из которых уже работают. Такие обсерватории следующего поколения и, особенно, космического базирования смогут фиксировать столкновения чёрных дыр далеко и обильно. Жаль только, что заработают эти инструменты не раньше середины следующего десятилетия.

Космический телескоп «Спитцер» объяснил пищевые привычки сверхмассивной чёрной дыры — она «кушает» регулярно и понемногу

Сверхмассивные чёрные дыры подобные той, что находится в центре нашей галактики, демонстрируют завидное постоянство тихой активности. Их излучение стабильно и умеренно, как будто вещество на них падает непрерывным и необильным ручейком. В относительном хаосе Вселенной это выглядит необычно, и учёные взялись разобраться с «пищевыми» привычками этих интереснейших объектов. Найти ответ помогли архивы телескопа «Спитцер».

 Источник изображения: NASA

Слева пыль, газ и звёзды, справа только пыль. Источник изображения: NASA

Данный случай стал наглядным примером того, как архивные данные помогают делать открытия, которые учёные проглядели в момент первичного сбора и изучения информации. К настоящему дню компьютерное моделирование развилось достаточно сильно, если сравнивать с инструментами 20-летней давности. С помощью уточнённых моделей и на более мощном оборудовании группа учёных воссоздала механизм тихого питания сверхмассивных чёрных дыр, когда их активность, выраженная в излучении аккреционного диска, оставалась равномерной без резких перепадов яркости.

 Синим пунктиром показаны два рукава пыли, питающие чёрную дыру (синий кружок — это её диск аккреции)

Синим пунктиром показаны два рукава пыли, питающие чёрную дыру (синий кружок — это её диск аккреции)

Для подтверждения модели исследователи воспользовались тысячами снимков галактики Андромеда, сделанными инфракрасной космической обсерваторией «Спитцер», а также данными «Хаббла» в видимом диапазоне. Изучая свет на разных длинах волн, учёные смогли отделить пыль и газ от звёзд и областей звездообразования. Детальное изучение потоков пыли в центре Андромеды выявило два отчётливых рукава, направляющихся к сверхмассивной чёрной дыре в центре этой галактики. Данные наблюдений точно уложились в те пределы, которые установило моделирование, а это означает верность предложенной теории тихого питания сверхмассивных чёрных дыр. Вещество падает на аккреционный диск чёрной дыры равномерно, а не сгустками, питая её множественными потоками пыли и газа.

NASA показало видео с падением на чёрную дыру и полётом вокруг горизонта событий — круче, чем в «Интерстелларе»

Используя новейшие данные и мощности суперкомпьютера, специалисты NASA создали видео падения на чёрную дыру и облёт вокруг горизонта событий. Это был бы билет в один конец, поэтому реальный видеоряд подобного манёвра человечество вряд ли когда-либо увидит. Моделирование NASA даёт представление о невероятных явлениях самым доступным образом — через визуализацию.

 Источник изображения: NASA

Пересекая горизонт событий. Художественное представление. Источник изображения: NASA

Картинка транслируется виртуальной камерой, падающей за горизонт событий со всеми возможными световизуальными эффектами для наблюдателя. Для стороннего зрителя приближающийся к границе горизонта событий объект превратился бы в «спагетти» — гравитация растянула бы его вместе с пространством-временем. Для взгляда со стороны в таком виде объект находился бы бесконечно долго, но для самого объекта жизнь и существование прекратились бы в считанные секунды — его размело бы на элементарные частицы и понесло бы к центру чёрной дыры. Симуляция для виртуальной камеры позволяет насладиться визуальными эффектами после пересечения горизонта событий, пока камера не прекращает существования.

Второй ролик показывает облёт вокруг горизонта событий на безопасном отдалении и как меняется вид неба и аккреционного диска по мере облёта чёрной дыры на околосветовой скорости в области искажения пространства времени. За пару облётов управляющий кораблём астронавт вернулся бы к своим товарищам на 36 минут моложе их, ведь при движении на околосветовых скоростях время замедляется. Они бы постарели, а он — нет.

Симуляция NASA создана для сверхмассивной чёрной дыры в центре нашей галактики. Её горизонт событий простирается на 25 млн км. Видео начинается на расстоянии 640 млн км от чёрной дыры и показывает путешествие, которое в реальном времени заняло бы около трёх часов. В процессе симуляции суперкомпьютер NASA Discover работал пять суток и создал свыше 10 Тбайт данных.

Это отличный материал для демонстрации обычным людям процессов, которые не укладываются в голове. Кристофер Нолан в фильме «Интерстеллар» показал хороший пример, пригласив для визуализации эффектов с чёрной дырой учёного Кипа Торна, получившего Нобелевскую премию с двумя другими коллегами за открытие гравитационных волн. В этом плане научно-фантастический фильм 2014 года предвосхитил усилия NASA по визуализации полётов рядом с чёрной дырой, но видеоролик NASA, безусловно, максимально точно передаёт те визуальные впечатления, которые могут сопровождать подобный вояж.

Чёрные дыры в ранней Вселенной развивались быстрее галактик, показали наблюдения «Джеймса Уэбба»

В вопросе эволюции черных дыр много тёмных пятен. Космическая обсерватория им. Джеймса Уэбба позволяет прояснить ряд из них, поскольку она может заглянуть во времена ранней Вселенной. Например, «Уэбб» способен оценить размеры чёрных дыр и галактик 13 млрд лет назад и дать подсказку о том, что из них эволюционировало быстрее. Знание начальных условий многое прояснит в эволюции Вселенной и наблюдаемых в ней объектов.

 Квазар J0148 со сверхмассивной чёрной дырой в центре галактики. Источник изображения: NASA

Квазар J0148 со сверхмассивной чёрной дырой в его центре. Источник изображения: NASA

Группа астрономов из Массачусетского технологического института опубликовала в журнале Astrophysical Journal работу, в которой рассказала об исследовании шести квазаров на удалении около одного миллиарда лет от Большого взрыва. Квазары — это активные центры галактик. Фактически — это диск аккреции вокруг сверхмассивной чёрной дыры в центре галактики, в котором вещество разогревается так сильно, что светит на несколько порядков ярче всех остальных звёзд в галактике-хозяйке. И «Уэбб» стал тем инструментом, который помог на безумном удалении отделить свет звёзд от света аккрецирующих дисков.

Измерения показали, что чёрные дыры в центрах древних галактик имеют массы порядка 10 % от массы окружающих их звёзд. С одной стороны, это не кажется слишком много. Однако следует принимать во внимание, что сверхмассивные чёрные дыры в центрах галактик в нашей части Вселенной имеют массы до 0,1 % от масс звёзд в галактиках-хозяйках. Данное наблюдение даёт возможность сделать вывод, что в ранней Вселенной чёрные дыры эволюционировали быстрее галактик.

Более того, сверхмассивные чёрные дыры, судя по данной работе, могли возникнуть из более тяжёлых зародышевых первичных чёрных дыр, чем это предполагалось раньше. В противном случае учёным нечем объяснить тот факт, что всего через 1 млрд лет после Большого взрыва чёрные дыры развились до масс в несколько миллионов и миллиардов масс Солнца.

Открыта вторая по близости к Земле чёрная дыра, и она оказалась рекордно большой

Удивительно, но в относительной близости к Земле скрывалась необычно большая чёрная дыра звёздной массы. Открытие сделано на основе данных европейского астрометрического спутника «Гайя» (Gaia). В двойной системе вместе со звездой-гигантом обнаружена чёрная дыра массой 33 солнечных масс. Это самый крупный такого рода объект, обнаруженный в Млечном Пути и это вторая по близости к Земле чёрная дыра в нашей галактике.

 Художественное представление системы Источник изображений: ESA

Художественное представление системы Gaia BH3. Источник изображений: ESA

Ранее в каталоге «Гайи» внимание астрономов привлекла гигантская звезда Gaia DR3 4318465066420528000 (Gaia BH3). Звезда находится на удалении 2000 световых лет от Солнечной системы в созвездии Орла. Наблюдение за звездой с помощью эшелле-спектрографа UVES на наземном телескопе VLT Южной европейской обсерватории в Чили показало, что у звезды есть невидимый партнёр, параметры которого оказались достаточно необычными, что позволило прийти к выводу, что это чёрная дыра с рекордной звёздной массой.

Расчёты показывают, что звезда и чёрная дыра совершают один оборот по орбите за 11,6 года. Спектральный анализ показал, что звезда бедна металлами и, следовательно, чёрная дыра также образовалась из звезды-гиганта с низкой металличностью. Это первое такое открытие. Именно звёзды с низкой металличностью потенциально способны образовывать рекордно массивные чёрные дыры после своей смерти, так как они в процессе жизни не так активно «разбазаривают» вещество, как звёзды с высоким содержанием металлов.

До обнаружения чёрной дыры в системе Gaia BH3 самой массивной чёрной дырой звёздной массы считался объект Лебедь Х-1 массой 21 солнечная на удалении около 7000 световых лет от нас. Самая близкая к нам чёрная дыра солнечной массы расположена в 1500 световых годах — это чёрная дыра Gaia BH1 с массой в 10 солнечных. Также была найдена ещё одна чёрная дыра подобной массы — Gaia BH2, которая расположена на удалении 3800 световых лет от Солнечной системы. Новое открытие затмевает предыдущие находки и делает его крайне интересным.

Обнаружен объект из необъяснимого провала масс между нейтронными звёздами и лёгкими чёрными дырами — его засекли детекторы LIGO

5 апреля опубликованы первые данные нового цикла наблюдений коллаборации LIGO-Virgo-KAGRA, стартовавшего год назад. Первым достоверно подтверждённым событием стал гравитационно-волновой сигнал GW230529. Это событие оказалось уникальным и вторым подобным за всю историю работы детекторов. Один из объектов гравитационного взаимодействия оказался из так называемого разрыва масс между нейтронными звёздами и лёгкими чёрными дырами, а это новая загадка.

 Художественное представление рзрыва нейтиронной звезды чёрной дырой. Источник изображения: Max Planck Institute for Gravitational Physics

Художественное представление разрыва нейтронной звезды чёрной дырой. Источник изображения: Max Planck Institute for Gravitational Physics

Согласно данным гравитационно-волновых детекторов LIGO, событие GW230529 представляет собой взаимодействие двух объектов — одного массой 1,2–2,0 солнечных масс, а второго — более чем в два раза массивнее (2,5–4,5 солнечных масс). Первый компактный объект определён как нейтронная звезда, а второй попал в диапазон масс, в котором ничего не должно находиться. Выше разрыва учёные находили лёгкие чёрные дыры, а ниже — нет. Также в этот диапазон не могут попасть нейтронные звёзды. Остаётся предположить, что учёные открыли легчайшую чёрную дыру, что стало вызовом для современной астрофизики.

В одно из предыдущих наблюдений детекторами LIGO-Virgo подобный объект промежуточной массы уже наблюдался — это сигнал GW190814. Но тогда, в 2019 году, был получен сигнал об объекте из нижнего диапазона разрыва масс, что заставило заподозрить в нём тяжелейшую нейтронную звезду. Сигнал GW230529 подбросил новую загадку, но одна только гравитационно-волновая обсерватория её не решит. Для этого нужны наблюдения в других диапазонах.

Кстати, сигнал GW230529 был обнаружен только обсерваторией LIGO. Обсерватория Virgo в Италии и KAGRA в Японии данных не увидели, поэтому определение направления на событие затруднено. В то же время обнаружение сигнала на одном детекторе стало проверкой нового программного обеспечения, которое успешно отфильтровало шум и вычленило полезный и, как оказалось, уникальный сигнал.

В январе обсерватории были остановлены на плановое обслуживание и модернизацию. Обсерватория в Японии подверглась землетрясению и вынуждена была встать на ремонт. Новый сеанс наблюдения начнётся 10 апреля и продлится до февраля 2025 года. В первый цикл было зафиксировано 81 событие, данные по первому из них — GW230529 — опубликованы. Всего по окончанию цикла ожидается регистрация свыше 200 гравитационно-волновых событий.

Получено первое изображение магнитных полей чёрной дыры в центре Млечного Пути

Семь лет назад стартовал грандиозный эксперимент по получению первых изображений чёрной дыры. Эти совершенно невидимые и даже сейчас всё ещё гипотетические объекты попытались запечатлеть на снимках. Первым получили изображение сверхмассивной чёрной дыры M87*, а вслед за ним снимок намного меньшей чёрной дыры в центре нашей галактики — Стрелец A* (Sgr A*). И этим дело не ограничилось.

 Источник изображения: Event Horizon Telescope

Изображение магнитных полей чёрной дыры Стрелец А* в поляризованном свете. Источник изображения: Event Horizon Telescope

Следует сказать, что чёрные дыры M87* и Sgr A* находятся на противоположных концах шкалы масс этих объектов. Чёрная дыра в центре нашей галактики имеет всего 2,6 млн солнечных масс (4,3 по другим источникам), что противостоит M87* с массой 6 млрд солнечных. Соответственно, у них такая же разная динамика. Чёрную дыру M87* на удалении 55 млн световых лет от нас можно снимать с выдержкой в несколько дней и даже недель, тогда как более мелкая и юркая чёрная дыра Sgr A* находится всего на расстоянии 27 тыс. световых лет, и снимать её нужно с выдержкой от нескольких минут до часов, иначе чётких структур на изображении не получить.

Что касается самой методики получения снимков, то также следует понимать, что напрямую увидеть объект и его тень нельзя. Объект в принципе недоступен для регистрации в любом электромагнитном диапазоне (об излучении Хокинга мы сейчас не говорим), зато его тень — окружающую чёрную дыру вещество в аккреционном диске, выбрасываемое в пространство электромагнитными полями чёрной дыры, можно легко наблюдать в радиодиапазоне. Проблема тут в низком разрешении отдельных радиотелескопов, поэтому для получения снимков чёрной дыры была создана коллаборация «Телескоп горизонта событий» (Event Horizon Telescope, EHT).

Радиоданные, в отличие от оптических данных (условно — фотографий), достаточно легко объединить в один массив. Поэтому следить за чёрной дырой можно было сразу со многих радиотелескопов, причём не обязательно полностью синхронно. Нужно было лишь точно сопоставить данные наблюдений, например, с помощью атомных часов или сигналов GPS. Потом жёсткие диски с результатами свозились в одно место и обрабатывались как единый массив, полученный виртуальным радиотелескопом размером с Землю.

Изображение M87* было собрано из данных достаточно быстро — уже в 2019 году. На обработку данных о нашей чёрной дыре Sgr A* ушло пять лет. Первое изображение обнародовали только в 2022 году. Это было, как получить чёткий снимок дерева на сильном ветру, сетовали учёные. Но у них получилось, и изображения оказались достаточно похожими, несмотря на огромнейшие различия в массе объектов.

Затем учёные провели наблюдение за M87* в поляризованном свете и синтезировали снимок электромагнитных полей вокруг этого объекта. Возникло разумное желание посмотреть, а как с этим обстоят дела в случае нашей чёрной дыры? Снова наблюдения — и первый результат, который не разочаровал. Впервые полученный в поляризованном свете снимок магнитных полей чёрной дыры Стрелец A* оказался очень и очень похожим на такое же изображение M87*. Из этого учёные делают вывод, что хотя M87* и Стрелец A* совершенно разные по набору характеристик чёрные дыры, устроены они крайне похоже.

Похожесть M87* и Стрелец A* теперь открывает путь к обнаружению джета Стрелец A*. Джет M87* обнаружен около ста лет назад и хорошо наблюдается, что позволяет вычислить скорость вращения чёрной дыры. С нашей дырой пока ничего непонятно. Нам неизвестна её ориентация и скорость вращения. Снимки в поляризованном свете обещают помочь с разгадкой этих тайн, о раскрытии которых учёные совсем недавно даже не думали.

С помощью микроторнадо из жидкого гелия-4 в лаборатории создали наиболее точную модель чёрной дыры

Группа британских учёных опубликовала в журнале Nature статью, в которой сообщила о создании наиболее точной модели чёрной дыры. Прямое наблюдение этих объектов в природе крайне затруднено, поскольку чёрные дыры блокируют электромагнитное излучение. Поэтому лабораторное моделирование — это один из путей изучить их свойства и сопоставить с теоретическими представлениями.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

В качестве основы лабораторной модели чёрной дыры учёные из Ноттингемского университета, Королевского колледжа Лондона и Университета Ньюкасла представили охлаждённый до сверхтекучего состоянии изотоп гелий-4. Вещество охладили до -271 °C и закрутили в воронку.

В одном из ранних исследований учёные обратили внимание на то, что воронка воды сильно напоминает гравитационные явления искажения пространства-времени вблизи чёрных дыр. Использование для моделирования жидкости в сверхтекучем состоянии с охлаждением едва ли не до абсолютного нуля привносит в процесс квантовые свойства, а это — путь к квантовой теории поля и сути квантового поведения чёрных дыр. По крайней мере, на уровне квантовой механики ряд процессов должны проходить одинаково и это можно соотнести с теорией.

«Использование сверхтекучего гелия позволило нам изучить крошечные поверхностные волны с большей детализацией и точностью, чем в наших предыдущих экспериментах в воде, — пояснил физик Патрик Шванчара (Patrik Švančara) из Ноттингемского университета, который руководил исследованием. — Поскольку вязкость сверхтекучего гелия чрезвычайно мала, мы смогли тщательно исследовать их взаимодействие со сверхтекучим торнадо и сравнить полученные результаты с нашими собственными теоретическими прогнозами».

 Источник изображения: Leonardo Solidoro

Источник изображения: Leonardo Solidoro

Изучая «торнадо в стакане», исследователи смогли выявить сходство между вихревым потоком и влиянием вращающейся чёрной дыры на искривленное пространство-время вокруг нее. В частности, исследователи наблюдали стоячие волны, аналогичные связанным состояниям чёрной дыры, и возбуждения, аналогичные кольцевому замыканию новообразованной чёрной дыры. И это только начало. Теперь, когда исследователи продемонстрировали, что их эксперимент работает так, как они задумали, «вихрь» готов открыть новую область науки о чёрных дырах.

Cверхмассивная чёрная дыра разорвала звезду в относительной близости от Земли

Учёные Института астрономии при Гавайском университете доложили, что им удалось зафиксировать событие приливного разрушения (TDE) звезды сверхмассивной чёрной дырой, которая находится в центре галактики NGC 3799. Эта галактика характеризуется активным звездорождением, располагается в 160 млн световых лет от Земли и наблюдается в созвездии Льва.

 Иллюстрация спагеттификации звезды сверхмассивной чёрной дырой. Источник изображения: hawaii.edu

Иллюстрация спагеттификации звезды сверхмассивной чёрной дырой. Источник изображения: hawaii.edu

Открытие было сделано 22 февраля 2023 года с помощью системы ASAS-SN, предназначенной для поиска сверхновых, когда исследователи заметили внезапное прояснение и быстрое затухание спиральной галактики с перемычкой, где произошло событие. TDE возникает, когда звезда слишком близко подходит к сверхмассивной чёрной дыре — такие чёрные дыры находятся в центре многих крупных галактик и имеют массы в миллионы или даже миллиарды солнечных. Гравитация сверхмасисвной чёрной дыры порождает колоссальные приливные силы, которые вытягивают звезду — она превращается в космическую лапшу из звёздного вещества и обвивает чёрную дыру как спагетти на вилке. После этого процесса, называемого спагеттификацией, разрушенная звезда постепенно падает в чёрную дыру. Параллельно создаются яркие вспышки, которые можно увидеть на Земле.

Эти события довольно распространены, но обнаружить TDE в относительной близости к Земле получается очень нечасто. Поэтому произошедшее в галактике NGC 3799 событие, которому было присвоено обозначение ASASSN-23bd, оказалось приоритетным для исследователей. Были проведены дополнительные наблюдения при помощи телескопов системы ATLAS, предназначенной для оповещения о приближении астероидов, а также обсерватории Кека. Выяснилось, что ASASSN-23bd выделяется среди TDE не только своей близостью к Земле: событие породило яркий всплеск всего на 15 дней, то есть оно прошло примерно вдвое быстрее, чем ему подобные. Кроме того, в результате было произведено значительно меньше энергии, чем обычно. В результате событие отнесли к категории «быстрых TDE с низкой светимостью».

Обнаружена самая тяжёлая пара сверхмассивных чёрных дыр — как 28 млрд Солнц

Группа американских астрономов доказала, что архивные документы обсерваторий — это золотая жила. В данных наблюдений за ядром эллиптической галактики B2 0402+379 телескопом Gemini North на Гавайях обнаружилось достаточно сведений, чтобы «взвесить» пару находящихся там сверхмассивных чёрных дыр. Их общая масса оказалась рекордной для наблюдений за всю историю — они весят как 28 млрд Солнц.

 Художественное представление двойной системы из сверхмассивных чёрных дыр. Источник изображения: NOIRLab/NSF/AURA/J. daSilva/M. Zamani

Художественное представление двойной системы из сверхмассивных чёрных дыр. Источник изображения: NOIRLab/NSF/AURA/J. daSilva/M. Zamani

Галактика B2 0402+379, известная также как радиогалактика 4C+37.11, удалена от нас на 750 млн световых лет. Это «ископаемый» объект, оставшийся на месте бывшего галактического скопления. Вероятно, эта галактика возникла после нескольких этапов слияния других галактик скопления, что также объясняет возникновение сверхмассивных чёрных дыр в ходе такого процесса.

Архивные данные о звёздах в ядре B2 0402+379 позволили создать картину поведения скрытых там масс — пары кружащих друг вокруг друга сверхмассивных чёрных дыр. Точно подобранная модель предоставила возможность вычислить общую массу этих объектов, которая оказалась рекордной для двойной системы СЧД, — 28 млрд солнечных масс. Такого астрономы ещё не наблюдали.

Но на этом сюрпризы не закончились. Исходя из параметров двойной системы сверхмассивных чёрных дыр и звёзд в центре остатков древнего галактического скопления можно предположить, что эта пара кружит друг вокруг друга на расстоянии всего 24 световых года около 3 млрд лет. Обычно двойные системы СЧД заканчивают свой танец слиянием и образованием одной сверхмассивной чёрной дыры в центре галактики. В данном случае этого не произошло и, как подозревают учёные, этого вообще может никогда не произойти — их «танец» может оказаться вечным!

Согласно теории, моделям и наблюдениям, чёрные дыры в двойных системах (а такое случается, когда сливаются две галактики) за счёт динамического трения и взаимодействия с окружающим веществом и звёздами теряют энергию (угловой момент), сближаются и сливаются в один объект.

Наблюдаемая пара СЧД в B2 0402+379 оказалась настолько массивной, что обещает стать исключением из этого правила. Во-первых, она подобрала либо вытеснила из окружающего пространства всё вещество. Это позволило чёрным дырам сохранять значительную часть углового момента и почти не тормозить в орбитальном движении. Во-вторых, каждая из пары СЧД настолько большая, что потеря энергии за счёт излучения гравитационных волн для них очень и очень небольшая. Складывается впечатление, что система стала стабильной настолько, насколько это возможно.

Учёные продолжат наблюдать за B2 0402+379 в надежде обнаружить там вещество и взаимодействие с ним чёрных дыр. Это позволит точнее понять происходящие и возможные процессы в двойной системе. Наконец, это возможность узнать что-то новое и необычное об эволюции чёрных дыр и галактик, а это дорогого стоит.

«Джеймс Уэбб» впервые обнаружил в ранней Вселенной быстрорастущую сверхмассивную чёрную дыру

Ранняя Вселенная на красных смещениях больше 10 была в основном белым пятном для наблюдательной астрономии. Из-за смещения света в красный диапазон заглянуть дальше мог только инфракрасный телескоп, что привело к рождению «Уэбба». Открытия пошли косяком. Да, такие, что грозят изменить наши космологические теории. Ранняя Вселенная оказалась не пустыней, а средоточием удивительных вещей, включая зрелые массивные галактики и сверхмассивные чёрные дыры.

 Художественное представление квазара. Источник изображения: S. Dagnello (NRAO/AUI/NSF)

Художественное представление квазара. Источник изображения: S. Dagnello (NRAO/AUI/NSF)

Новым удивительным открытием стало обнаружение быстрорастущей сверхмассивной чёрной дыры примерно через 700 млн лет после Большого взрыва. Намёк на её существование в те времена появился после одного из первых глубоких наблюдений «Уэбба» летом 2022 года за окрестностями сверхмассивного скопления галактик Abell 2744. На снимке по бокам и над скоплением были замечены три ярких красных точки, привлёкших внимание астрономов.

Анализ показал, что это один и тот же квазар — активный центр галактики или активно питающаяся сверхмассивная чёрная дыра, которая благодаря эффекту гравитационного микролинзирования отобразилась одновременно в трёх местах на небе. С помощью спектрометра «Уэбба», а также с привлечением радиотелескопа ALMA и рентгеновского телескопа «Чандра» группа астрономов внимательно изучила этот объект и пришла к далеко идущим выводам.

Измерения и моделирование показало, что квазар слишком тяжёлый для подобного среднестатистического объекта. Его масса достигает 3 % массы галактики-хозяйки, тогда как в окружающей нас Вселенной масса квазаров обычно составляет 0,1 % массы галактик. Открытие такого массивного и активно питающегося объекта, о чём говорит его красный цвет, и так рано после Большого взрыва, заставляет предположить, что учёные наткнулись на недостающее переходное звено между зародышем сверхмассивной чёрной дыры и ярким квазаром.

 Три изображения A2744-QSO1, полученные «Уэббом». Источник изображения: Lukas J. Furtak et al. / Nature, 2024

Три изображения A2744-QSO1, полученные «Уэббом». Источник изображения: Lukas J. Furtak et al. / Nature, 2024

Учёных смущают участившиеся случаи открытия содержащих сверхмассивные чёрные дыры квазаров в первый миллиард лет жизни Вселенной. Нам непонятен процесс быстрого набора массы чёрными дырами за короткий промежуток времени. В теории зародышами сверхмассивных чёрных дыр могут быть чёрные дыры, рождённые смертью первых звёзд определённой большой массы, либо чёрные дыры, возникшие при прямом коллапсе газовых облаков вскоре после Большого взрыва. Обнаруженный учёными объект A2744-QSO1 на красном смещении z=7,045 демонстрировал высокий темп естественного роста, что может помочь объяснить механизмы эволюции сверхмассивных чёрных дыр на раннем этапе развития Вселенной.

Одного наблюдения определённо не хватит для построения стройных математических моделей эволюции сверхмассивных чёрных дыр. Но «Джеймс Уэбб» поможет набрать достаточно данных по таким объектам, и тогда своё слово скажут теоретики. Пока они не спешат разрушать космологические устои, требуя больше доказательств по наблюдаемым с помощью «Уэбба» явлениям.


window-new
Soft
Hard
Тренды 🔥
Новая статья: Songs of Conquest — песнь величия. Рецензия 8 ч.
В ранний доступ Steam ворвался олдскульный шутер Selaco на движке классических Doom — с перестрелками и умными врагами в духе F.E.A.R. 10 ч.
Warhorse официально подтвердила перевод на русский язык в Kingdom Come: Deliverance 2 11 ч.
Perplexity AI превратит поисковую выдачу в веб-страницу, которой удобно делиться с другими 11 ч.
Google добавила редактирование RCS-сообщений и другие полезные функции в Android 12 ч.
Эндгейм подкрался незаметно: авторы перспективного «дьяблоида» Wolcen: Lords of Mayhem решили забросить разработку всего через четыре года после релиза 12 ч.
Глава Take-Two Interactive уклонился от ответа, выйдет ли GTA VI на ПК 13 ч.
Twitch уволил всех членов совета по безопасности — их заменят избранные пользователи 13 ч.
Google обвинила в странных ответах поискового ИИ самих пользователей и недостаток обучающих данных 15 ч.
Слухи: Konami скоро объявит о переносе Metal Gear Solid Delta: Snake Eater на 2025 год 16 ч.
Sony заявила о снижении капитальных затрат на 30 % в полупроводниковом бизнесе 16 мин.
Китайский подрядчик Apple обвиняется на Тайване в незаконной охоте за персоналом 2 ч.
Samsung будет выпускать для AMD передовые 3-нм чипы с GAA-транзисторами 6 ч.
Российские компании продолжают закупать ИИ-ускорители Nvidia, несмотря на санкции, но затраты растут 7 ч.
США снова передумали повышать пошлины на видеокарты из Китая 9 ч.
На МКС сломалась одна из систем жизнеобеспечения 9 ч.
Учёные создали тончайшую линзу в мире — всего три атома в толщину 11 ч.
Квартальная выручка Pure Storage превысила ожидания аналитиков — теперь компания надеется продавать больше СХД гиперскейлерам 11 ч.
Представлены первые видеокарты Radeon с разъёмом 12+4-pin — ASRock Radeon RX 7900 XTX WS и RX 7900 XT WS для рабочих станций 11 ч.
В России начались продажи ноутбуков Digma Pro Fortis с процессорами Intel Core и быстрыми SSD 12 ч.