Сегодня 22 октября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → riken

Крупнейший в мире квантовый компьютер на сверхпроводящих кубитах запущен в Японии

В Японии запущен крупнейший в мире квантовый компьютер на сверхпроводящих кубитах. Систему разработали и изготовили компания Fujitsu и институт RIKEN. Над разработкой квантовых вычислителей они работают вместе с 2012 года. В марте 2023 года партнёры представили первый в Японии национальный 64-кубитный квантовый компьютер и обещали увеличить число кубитов до 100 в 2025 году, но превзошли сами себя и собрали систему на 256 кубитах — крупнейшую в мире.

 Источник изображения: Roselyne Min/Euronews

Источник изображения: Roselyne Min/Euronews

Японские инженеры смогли достичь рекордных показателей благодаря новой архитектуре сверхпроводящих квантовых процессоров. Во-первых, они сделали её микрокластерной, организовав кубиты в ячейки по четыре штуки в каждой. Во-вторых, ячейки выстроили не только в ряд, но также в виде многоэтажной или трёхмерной структуры, не забыв при этом решить проблемы теплоотвода.

Возросшая плотность размещения кубитов позволила поместить 256-кубитный процессор в корпус прежнего 64-кубитного. Тем самым появился задел для дальнейшего масштабирования квантовых сверхпроводящих процессоров, что специалистами в этой сфере расценивается как наиболее сложная задача при создании имеющего практическую ценность универсального и устойчивого к ошибкам квантового компьютера.

Нелишне напомнить, что большинство научных работ доказывают, что имеющий практическую ценность отказоустойчивый квантовый компьютер может быть создан, начиная с платформы с миллионом физических кубитов. Японские исследователи считают, что новая кластерная и трёхмерная архитектура доказывает возможность приблизиться к заветному рубежу в миллион кубитов в пределах разумных объёмов помещений под квантовые системы.

Отдельно подчёркивается, что 256-кубитный компьютер Fujitsu и RIKEN достиг той же высочайшей плотности размещения сигнальных и управляющих кабелей, необходимых для работы с кубитами — чтения, программирования и коррекции ошибок, что и квантовые системы Google и IBM. Типичный квантовый компьютер на сверхпроводящих кубитах выглядит как люстра с массой входных и выходных кабелей с высокочастотными разъёмами.

Это всё потому, что для работы со сверхпроводящими кубитами для неразрушающего чтения требуются микроволновые (радиочастотные) сигналы. Добавим к этому тщательное экранирование каждого сигнального провода и получаем жгуты кабелей, затрудняющие масштабирование. Выходом может стать перенос контролирующей электроники внутрь криогенной камеры к кубитам, но такое охлаждение полупроводники пока не выдерживают. Это всё в будущем. А пока создаются гибридные платформы, в которых обычные суперкомпьютеры управляют кубитами. Европа, кстати, как отмечает источник, отстаёт от США и Японии в вопросе высокоплотного монтажа интерфейсов для сверхпроводящих квантовых вычислителей.

Добавим, 256-кубитный компьютер Fujitsu и RIKEN доступен клиентам через облако во всём мире. Впрочем, доступ, вероятно, ограничен узким кругом клиентов, имена которых держатся в тайне. В любом случае, пока идёт проверка идей и поиск задач, которые квантовые вычислители могут решать на современном уровне своего развития. В новом году Fujitsu и RIKEN обещают представить 1000-кубитовую платформу, что станет новым шагом вперёд к мечте — к универсальному отказоустойчивому квантовому вычислителю, в ряде задач в миллиарды раз превосходящему классические компьютеры.

Япония построит зеттафлопсный суперкомпьютер — самый мощный в мире

Министерство образования, культуры, спорта, науки и технологий Японии (MEXT) объявило о планах построить преемник суперкомпьютера «Фугаку» (Fugaku), который ранее был самым быстрым в мире. Институт физико-химических исследований (RIKEN) и компания Fujitsu начнут его разработку в следующем году, сообщает Nikkei.

 Источник изображений: riken.jp

Источник изображений: riken.jp

Новый суперкомпьютер продемонстрирует производительность для алгоритмов искусственного интеллекта в 50 экзафлопс с пиковой производительностью зеттафлопсного масштаба в отдельных задачах — машина будет использоваться для работы с ИИ в научных целях. Другими словами, система сможет выполнять один секстиллион операций с плавающей запятой; зеттафлопс в тысячу раз быстрее экзафлопса, и если к 2030 году Япония построит такую систему, у неё действительно будет самый производительный суперкомпьютер в мире.

Каждый вычислительный узел суперкомпьютера Fugaku Next будет иметь пиковую производительность в несколько сотен терафлопс для вычислений с двойной точностью (FP64), около 50 петафлопс для вычислений с точностью FP16 и около 100 петафлопс для вычислений с 8-битной точностью; память HBM обеспечит пропускную способность в несколько сотен Тбайт/с. Для сравнения, вычислительный узел «Фугаку» демонстрирует 3,4 Тфлопс для вычислений с двойной точностью, 13,5 Тфлопс для вычислений с половинной точностью (FP16), а пропускная способность памяти составляет 1,0 Тбайт/с.

На первый год разработки системы министерство выделит 4,2 млрд иен ($29,05 млн), а общее государственное финансирование превысит 110 млрд иен ($761 млн). Возглавит разработку RIKEN, один из самых известных исследовательских институтов Японии; а с учётом того, что MEXT требует максимального присутствия японских технологий в системе, разработкой оборудования будет заниматься преимущественно Fujitsu. Какие-то конкретные требования к архитектуре Fugaku Next в документах MEXT не указываются — вероятно, это будут центральные процессоры со специализированными ускорителями или комбинация центральных и графических процессоров.

Если преемник «Фугаку» будет работать на процессорах Fujitsu, он получит чипы, которые выйдут после MONAKA, у которых на борту до 150 ядер Armv9. Речь идёт о компоненте в мультичиплетной конфигурации, распределенной по многоядерным кристаллам и кристаллами SRAM и ввода-вывода. Последние обеспечивают работу с памятью DDR5, а также интерфейсами PCIe 6.0 и CXL 3.0 для различных ускорителей и периферии. Кристаллы ядер будут производиться с использованием 2-нм техпроцесса TSMC. Преемник Fujitsu MONAKA получит большее число ядер и более мощные интерфейсы — он, возможно, станет изготавливаться по техпроцессу класса 1 нм или ещё более передовому.


window-new
Soft
Hard
Тренды 🔥
«Жидкое стекло» Apple можно будет заматировать: представлена нова бета iOS 26.1 12 мин.
Сервисы AWS упали второй раз за день — тысячи сайтов по всему миру снова недоступны 8 ч.
Fujitsu влила £280 млн в британское подразделение в преддверии выплат компенсаций жертвам багов в её ПО Horizon 8 ч.
Календарь релизов 20 – 26 октября: Ninja Gaiden 4, Painkiller, Dispatch и VTM – Bloodlines 2 8 ч.
В Windows сломалась аутентификация по смарт-картам после октябрьских обновлений — у Microsoft есть временное решение 9 ч.
Вместо Majesty 3: российские разработчики выпустили в Steam амбициозную фэнтезийную стратегию Lessaria: Fantasy Kingdom Sim 9 ч.
Слухи: Лана Дель Рей исполнит заглавную песню для «Джеймса Бонда», но не в кино, а в игре от создателей Hitman 10 ч.
Зов сердца: разработчики Dead Cells объяснили, почему вместо Dead Cells 2 выпустили Windblown 11 ч.
Adobe запустила фабрику ИИ-моделей, заточенных под конкретный бизнес 11 ч.
Китай обвинил США в кибератаках на Национальный центр службы времени — это угроза сетям связи, финансовым системам и не только 12 ч.
Президент США подписал соглашение с Австралией на поставку критически важных минералов на сумму $8,5 млрд 18 мин.
Новая статья: Обзор смартфона realme 15 Pro: светит, но не греется 5 ч.
Ещё одна альтернатива платформам NVIDIA — IBM объединила усилия с Groq 5 ч.
Учёные создали кибер-глаз, частично возвращающий зрение слепым людям 6 ч.
Samsung выпустила недорогой 27-дюймовый геймерский монитор Odyssey OLED G50SF c QD-OLED, 1440p и 180 Гц 6 ч.
Акции Apple обновили исторический максимум на новостях об отличных продажах iPhone 17 8 ч.
Представлен флагман iQOO 15 с чипом Snapdragon 8 Elite Gen 5 и батареей на 7000 мА·ч по цене меньше $600 9 ч.
Нечто из космоса врезалось в лобовое стекло самолёта Boeing 737 MAX компании United Airlines 10 ч.
Умные кольца Oura научатся выявлять признаки гипертонии, как последние Apple Watch 11 ч.
Дешёвая корейская термопаста оказалась вредна для процессоров и здоровья пользователей 11 ч.