Сегодня 31 мая 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → астрономия
Быстрый переход

«Джеймс Уэбб» подтвердил открытие самой древней галактики — менее чем в 300 млн световых лет от Большого взрыва

На сайте arXiv одновременно появились три статьи, в которых независимые группы учёных пришли к одному выводу: обсерватория «Джеймс Уэбб» подтвердила открытие самой древней галактики в истории наблюдений человечества. Эта галактика активно росла и развивалась менее чем через 300 млн лет после Большого взрыва, что настойчиво подталкивает учёных изменить представление о ранних этапах эволюции Вселенной.

 Источник изображения: NASA

Источник изображения: NASA

С появлением такого мощного инструмента, как космическая обсерватория им. Джеймса Уэбба, земная наука получила возможность заглянуть в эпоху реионизации и глубже, когда пространство было заполнено нейтральным водородом, который как густой туман рассеивал видимый свет звёзд. Считалось, что в те времена рассвета Вселенной было мало галактик и они были бедны на звёзды, ведь после Большого взрыва прошло всего несколько сотен миллионов лет. Звёзды и их скопления просто не успели бы развиться. «Джеймс Уэбб» ошеломил: плотность галактик и их яркость оказались впечатляющими даже в начале эпохи реионизации.

Удалённость и сложность измерений не позволяли сразу понять, какие галактики древние, а какие просто уходят в красный спектр по причине преобладания соответствующего типа звёзд. Разобраться с этим позволяют спектральные приборы «Уэбба». Они более-менее точно определяют красные смещения галактик, что позволяет судить об истинной удалённости этих объектов.

До недавнего времени самой древней подтверждённой галактикой была JADES-GS-z13-0, обнаруженная через 320 млн лет после Большого взрыва. Новой самой древней галактикой стала JADES-GS-z14-0, пойманная в объектив «Уэбба» менее чем через 300 млн лет после Большого взрыва. Масса этой галактики оказалась примерно на уровне 10 % от массы Млечного Пути, а её звёздное население росло со скоростью 25 солнечных масс в год. Обнаружить такой яркий объект и так рано — это ломает устоявшиеся представления об эволюции звёзд и галактик. Слово за вами, теоретики!

Первичные чёрные дыры — плохие кандидаты на роль тёмной материи, объяснили японские учёные

Астрофизики из Исследовательского центра ранней Вселенной (RESCEU) и Института физики и математики Вселенной им. Кавли (Kavli IPMU, WPI) Токийского университета представили новую модель эволюции первичных чёрных дыр. Эти миниатюрные объекты, как считается, могли бы играть роль тёмной материи, став своего рода центрами кристаллизации вещества и инициаторами появления всего в нашей Вселенной — звёзд, галактик и прочего. Японцы в этом усомнились.

 Источник изображения: ESA/ Planck Collaboration

Коротковолновые события ПЧД с сильнейшей амплитудой могли влиять на реликтовое излучение. Источник изображения: ESA

Согласно распространённой в научной среде гипотезе, первичные чёрные дыры возникли на этапе после Большого взрыва в процессе быстрого (инфляционного) расширения Вселенной, когда из объекта меньше атома она расширилась на 25 порядков. В процессе этого Вселенная перестала быть однородной. Сегодня мы наблюдаем следы этой неоднородности в виде реликтового излучения — космического сверхвысокочастотного микроволнового фона. Изучение слабых отклонений в реликтовом излучении может дать подсказку о происходящих 13,8 млрд лет назад процессах на самых ранних его этапах. Именно этим занялись исследователи из Японии.

Учёные применили к наблюдаемым данным хорошо изученную квантовую теорию поля. Эта теория помогает нам разбираться с поведением элементарных частиц, что также хорошо согласуется с измерениями. Перенос квантовой теории поля на космологию показал, что первичные чёрные дыры (ПЧД) должны были оказывать измеряемое влияние на реликтовое излучение. Сами по себе они неспособны влиять на сверхвысокочастотные волны, но в достаточном количестве первичные чёрные дыры должны были бы в отдельных случаях оказать когерентное влияние на микроволновый фон — усилить амплитуду отдельных волн излучения.

Если бы первичных чёрных дыр во Вселенной было много, то отклонений в показаниях реликтового излучения было бы намного больше. Тогда, в частности, первичные чёрные дыры можно было бы рассматривать в качестве кандидатов на роль тёмной материи. Но этого не наблюдается, и квантовая теория поля хорошо объясняет, почему это так. Сейчас учёные ожидают новых данных наблюдений гравитационно-волновых обсерваторий LIGO в США, Virgo в Италии и KAGRA в Японии, которые, в том числе, находятся в разгаре поисков следов первичных чёрных дыр. И у них есть немалые шансы получить подтверждение своей модели.

Звёзды могут пропускать стадию сверхновой и сразу превращаться в чёрную дыру

За последние семь лет с неба пропали свыше 800 звёзд. Некоторые из них исчезали за считанные часы — в краткие перерывы между наблюдениями. Учёные давно начали подозревать, что при определённых обстоятельствах звёзды могут коллапсировать сразу в чёрные дыры без превращения в сверхновую и выброса энергии. Но надёжных доказательств этому не было. Новая работа по изучению двойной системы с чёрной дырой и голубым гигантом обещает пролить свет на исчезающие звёзды.

 Художественное представление системы  Источник изображения: ESO/L. Calçada

Художественное представление системы VFTS 243. Источник изображения: ESO/L. Calçada

Астрофизики из Копенгагенского университета провели детальное наблюдение за системой VFTS 243 в Большом Магеллановом Облаке, удалённой на 160 тыс. световых лет от Земли. В системе находится одна чёрная дыра массой около 10 солнечных и голубой гигант с массой 25 солнечных масс. Чёрная дыра, как показывают наблюдения и расчёты, образовалась в результате коллапса другой массивной звезды в конце её жизни. Вот только в системе нет следов взрыва сверхновой, которая, как считается, ставит точку в жизни звезды.

«Обычно вспышки сверхновых в звёздных системах можно определить массой способов после того, как они произошли, — поясняют авторы исследования. — Но, несмотря на то, что VFTS 243 содержит звезду, которая коллапсировала в чёрную дыру, следов взрыва нигде не обнаружено. VFTS 243 — необычная система. Орбита системы практически не изменилась с момента коллапса звезды в чёрную дыру».

В опубликованной в журнале Physical Review Letters работе исследователи пишут, что чёрная дыра в системе VFTS 243, вероятно, образовалась мгновенно, причём выброс энергии в основном пришёлся на нейтрино. Это означает, что стадией сверхновой можно было пренебречь.

«Если бы кто-то стоял и смотрел на обычную переживающую полный коллапс звезду, это было бы похоже на то, что в один момент звезда внезапно гаснет и исчезает с небес, — говоря авторы работы. — Коллапс настолько полный, что взрыва не происходит, ничто не улетучивается, и никто не увидит яркой сверхновой в ночном небе».

Проделанная работа не ставит точку в деле о неудавшихся сверхновых. Но она заставляет по-новому взглянуть на аналогичные случаи, благо таких может быть достаточно много для уточнения наших знаний о финальных этапах эволюции звёзд.

Чёрные дыры ведут себя как «Звёзды смерти» — их смертоносные джеты могут быстро менять направления

Джеты чёрных дыр — субсветовые выбросы частиц и вспышки сфокусированного гамма и рентгеновского излучения — смертельно опасны на расстоянии до нескольких тысяч световых лет. И если этого мало, то учёные выяснили, что джеты оказались непредсказуемыми. Наблюдение за 16 чёрными дырами в центрах галактик показало, что направление смертоносного луча колоссальной мощности может сравнительно быстро измениться на угол до 90 °.

 Вращение чёрной дыры в представлении художника. Источник изображения: Lab@Openverse and Zhejiang Lab

Вращение чёрной дыры в представлении художника. Источник изображения: Lab@Openverse and Zhejiang Lab

Данные получены международной группой астрономов с использованием космической рентгеновской обсерватории NASA «Чандра» (Chandra) и радиоинтерферометра Very Long Baseline Array (VLBA). Учёные искали следы брешей в газопылевых облаках вокруг или вблизи чёрных дыр — это были следы ударов предыдущих джетов, а также активные джеты. Тем самым удалось проследить, как менялись направления высокоэнергетических струй в течение времени.

«Мы обнаружили, что около трети лучей теперь направлены в совершенно иных направлениях, чем раньше, — рассказал астрофизик Франческо Убертози (Francesco Ubertosi) из Болонского университета в Италии. — Эти чёрные дыры "Звезды смерти" поворачиваются и указывают на новые цели, подобно вымышленной космической станции из "Звёздных войн"».

Около трети изученных джетов (30–38 %), по-видимому, значительно изменили направление (более чем на 45 °) за период в 10 млн лет или меньше. Похоже, что это относительно обычное явление для сверхмассивных чёрных дыр. В ряде случаев наблюдались изменения направления почти на 90 °. Самое короткое время, за которое происходила перестройка на другую цель, составило всего около 1 млн лет. В космическом масштабе это довольно быстрая смена направления.

«Учитывая, что возраст этих чёрных дыр, вероятно, превышает 10 млрд лет, мы считаем, что значительное изменение направления в течение нескольких миллионов лет является быстрым, — заявил астрофизик Геррит Шелленбергер (Gerrit Schellenberger) из Центра астрофизики Гарварда и Смитсоновского института (CfA) в США. — Изменение направления лучей гигантской чёрной дыры примерно за миллион лет аналогично изменению направления движения нового линкора в течение нескольких минут».

 Исследование истории джетов чёрной дыры в рентгеновском и радиодиапазоне

Исследование истории джетов чёрной дыры в рентгеновском и радиодиапазоне. Источник изображения: NASA/CXC/Univ. of Bologna

Поскольку эти струи затрудняют слияние газа и формирование звезд, любые изменения в их ориентации имеют важные последствия для состава окружающих их галактик. Очевидно, последствия будут также для биологической жизни, если она попадёт под такой «прожектор». Остаётся только радоваться, что подобные объекты очень и очень далеко от Солнечной системы. Впрочем, нас могут подстерегать другие опасности — вспышки сверхновых, нейтронные звёзды или килоновы, которые тоже выбрасывают смертоносные джеты.

Обнаружен самый большой в истории наблюдений протопланетный диск — он в 10 раз больше Солнечной системы

Учёные обосновали существование самого большого протопланетного диска в истории наблюдений. Кому-то сильно повезло или повезёт с запасами вещества в звёздной системе. По самым скромным подсчётам, система позволит сформироваться планетам вплоть до газовых гигантов на удалении в 300 раз большем, чем расстояние от Солнца до Юпитера.

 Художественное представление протопланетного диска. Источник изображения: NASA

Художественное представление протопланетного диска. Источник изображения: NASA

Строго говоря, объект IRAS 23077 + 6707 (IRAS 23077) был открыт около 40 лет назад инфракрасной обсерваторией IRAS. В 2016 году объект подвергся более детальному наблюдению с помощью обзорного телескопа Pan-STARRS. За десятилетие картинка не изменилась, что можно было бы ожидать от скоплений газа и пыли вокруг сверхновых или в процессе других динамических явлений во Вселенной, что заставило учёных по-новому взглянуть на него и, как оказалось, не зря.

Подключив к наблюдению IRAS 23077 + 6707 массив радиотелескопов SMA на Гавайях, учёные увидели, что данный объект обладает всеми характеристиками, присущими протопланетному диску. Но, какому! Газ, пыль, щебень и скопления вещества простирались на гигантское расстояние от родной звезды. Расстояние от неё до фиксируемого приборами края протопланетного диска IRAS 23077 + 6707 было в 300 раз больше, чем расстояние от Солнца до Юпитера, что соответствует 1500 астрономическим единицам.

 Источник изображений: SAO/ASIAA/SMA/K. Monsch et al/Pan-STARRS

В центре этой «космической бабочки» скрыт гигантский протопланетный диск. Источник изображений: SAO/ASIAA/SMA/K. Monsch et al/Pan-STARRS

«Данные SMA дают нам неопровержимые доказательства того, что это диск и, в сочетании с оценкой расстояния до системы, показывают, что он вращается вокруг звезды, которая, вероятно, в два-четыре раза массивнее нашего Солнца. Из данных SMA мы также можем взвесить пыль и газ в этом планетарном питомнике, в котором, как мы обнаружили, достаточно материала для формирования многих планет–гигантов — и на расстояниях, более чем в 300 раз превышающих расстояние между Солнцем и Юпитером!», — делятся открытием учёные.

За свой образ в данных радиотелескопа объект IRAS 23077 + 6707 получил прозвище «Чивито Дракулы», объединив в себе национальные акценты учёных-первооткрывателей: одного из Уругвая (чивито — это тот же гамбургер), другого — из Румынии. Объект не удобен для наблюдения в оптическом и инфракрасном диапазоне — протопланетный диск повёрнут к нам под углом, но в радиодиапазоне виден достаточно хорошо, чтобы различить его структуру и молекулярные сигнатуры присутствующих в нём веществ.

Изучение подобных объектов позволит нам лучше понять условия и процессы формирования звёздных систем. Поскольку объект IRAS 23077 + 6707 находится сравнительно недалеко от нас — на удалении примерно 1000 световых лет, он может дать множество подсказок в этой сфере исследований.

Так вот как это было! «Джеймс Уэбб» засёк начало рождения галактик в ранней Вселенной

Космический телескоп «Джеймс Уэбб» получил, похоже, одни из самых ценных снимков за время своей работы. С его помощью учёным удалось увидеть, как рождались первые галактики во Вселенной. Это наблюдение в общем случае подтвердило нашу теорию об эволюции звёзд, галактик и самой Вселенной.

 Источник изображения: NASA

Источник изображения: NASA

«Можно сказать, что это первые "прямые" изображения формирования галактик, которые мы когда-либо видели, — пояснил ведущий автор исследования Каспер Эльм Хайнц (Kasper Elm Heintz), астрофизик Центра космического рассвета (DAWN) в Дании. — В то время как ранее "Джеймс Уэбб" показывал нам ранние галактики на более поздних стадиях эволюции [уже сформированные], здесь мы являемся свидетелями самого их рождения и, следовательно, построения первых звёздных систем во Вселенной».

Телескоп получил изображения трёх галактик примерно через 400–600 млн лет после Большого взрыва. На тот момент галактики представляли собой скопления сгустков тёмной и обычной материи, по-видимому, с чёрной дырой в их центрах. Звёзд в них ещё не было или их было исчезающее мало, и лишь на ранних стадиях эволюции. Обычная материя в те времена — это практически один водород. Именно его движение и поглощение засекли спектральные приборы «Уэбба».

 Как это увидел «Уэбб»

Как это увидел «Уэбб»

На сделанных космической обсерваторией снимках учёные смогли различить движение водорода внутрь и по краям формирующихся галактик. Со временем под действием гравитации плотность газа в отдельных местах формирующихся галактик достигнет такого значения, которое запустит термоядерные реакции и породит первые звёзды. Но это будет потом и, к тому же, всё это мы видели на более поздних стадиях развития Вселенной. Увидеть фактически зачатие первых галактик — это редкая удача и, кстати, исследователи утверждают, что они выбирали цель для работы наобум, не до конца понимая, что же они хотят найти.

Астрономы пока не знают, как распределяется газ между центрами галактик, а также на их окраинах. Будущие наблюдения могут не только помочь решить эту задачу, но и показать, полностью ли газовые облака этих галактик состоят из первичного водорода или уже содержат более тяжёлые элементы.

Недалеко от Земли нашли потенциально пригодную для жизни экзопланету — Новый год на ней наступает каждые 13 дней

Группа астрономов на основании наблюдений с помощью нескольких телескопов обосновала открытие потенциально пригодной для жизни экзопланеты размерами с Землю. Экзопланета Gliese 12b находится у красного карлика на расстоянии всего 40 световых лет от нашей системы. Средняя температура поверхности экзопланеты составляет около 40 °C, что можно считать комфортным для возникновения той жизни, которую мы знаем по нашей планете.

 Возможные размеры открытой недалеко от Земли экзопланеты. Источник изображения: NASA

Возможные размеры открытой недалеко от Земли экзопланеты Gliese 12. Источник изображения: NASA

Родная звезда экзопланеты Gliese 12 относится к спектральному типу M3.5V — это так называемый красный карлик. Подобных звёзд большинство в нашей галактике — до 70 %. Это делает открытие потенциально обитаемой землеподобной планеты у красного карлика многообещающим событием. При этом близость планеты к звезде не делает жизнь на ней слишком рискованной. Красные карлики гиперактивны лишь на ранних этапах эволюции, а оставаться стабильными они могут сотни миллиардов и даже триллионы лет, что кратно превосходит сроки жизни нашего Солнца, например. Поэтому жизнь на них может развиваться так долго, как пожелает без оглядки на сроки жизни родной звезды.

Экзопланета Gliese 12 открыта методом транзита телескопом NASA TESS. Также наблюдения подтвердили данные с телескопа CHEOPS и ряда наземных инструментов. В дополнение к транзитному методу наличие экзопланеты у звезды подтвердили данные по колебаниям её радиальной скорости, зафиксированные спектрографами HARPS-N и TRES. Полученная информация помогла рассчитать массу, размер и плотность экзопланеты. Gliese 12 оказалась чуть легче Земли (0,88 массы нашей планеты). Её радиус примерно соответствует радиусу Земли. Большой вопрос — это наличие атмосферы. Мы ведь не надеемся обнаружить биологическую жизнь на планете без атмосферы?

Оба транзитных наблюдения не дали достоверной информации о наличии газовой оболочки вокруг Gliese 12. Однако в этом есть свои плюсы — она может быть разреженной и плохо различимой. Атмосфера вокруг Земли тоже неплотная. Наоборот, наличие плотной атмосферы вокруг экзопланеты может снизить шансы на возникновение жизни. Хороший пример — Венера. Плотная атмосфера и парниковый эффект создали там условия, при которых плавится свинец. Учёные надеются прояснить вопрос с атмосферой у Gliese 12 с помощью космического телескопа им. Джеймса Уэбба. Они уже запросили рабочее время на этом инструменте NASA.

Поглощение чёрными дырами звёздного вещества выдало их скорость вращения

Похоже, учёные разработали новые методы оценки параметров сверхмассивных чёрных дыр. У науки не так много возможностей, чтобы измерить те или иные характеристики этих таинственных объектов, и любой новый метод — это находка, ценность которой трудно переоценить. Оказалось, что агрессия чёрных дыр в отношении разрываемых ими звёзд в процессе поглощения вещества позволяет вычислить скорость их вращения.

 Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Звезда может подлететь к чёрной дыре с любой точки пространства. Такие события наблюдаются достаточно часто, что отражается в рентгеновских вспышках, когда вещество звезды падает на чёрную дыру. Точнее, на её диск аккреции. Как подозревают учёные, взаимодействие останков звезды с диском аккреции дестабилизирует последний. Это как ударить по вращающемуся волчку — его ось вращения отклонится от вертикального положения и начнёт описывать в пространстве окружность (возникнет прецессия).

Группа учёных из Массачусетского технологического института справедливо предположила, что амплитуда колебания (прецессия) диска аккреции связана со скоростью вращения чёрной дыры. Если можно будет вычислить прецессию, то, зная массу объекта, можно узнать скорость его вращения. Но измерения необходимо проводить длительное время и с высочайшей точностью. Сегодня это ресурсоёмкие исследования. Но в будущем ожидается запуск ряда широкоугольных телескопов нового поколения, которые будут легко фиксировать множественные переходные процессы.

Благодаря наблюдению за квазаром на удалении около одного миллиарда световых лет от нас (по зафиксированной в 2020 году рентгеновской вспышке AT2020ocn), учёные смогли вычислить скорость вращения сверхмассивной чёрной дыры в центре этого активного ядра галактики. Она оказалась примерно на уровне 25 % от скорости света. Само по себе это измерение мало что даёт науке, но многочисленные аналогичные измерения для всех наблюдаемых нами во Вселенной чёрных дыр расскажут об эволюции этих объектов ещё больше, чем мы сегодня знаем.

«Джеймс Уэбб» показал Туманность Ориона в деталях невиданной ранее красоты

В рамках отрабатываемой обсерваторией им. Джеймса Уэбба программы PDRs4All («область фотодиссоциации для всех») исследователи получили самые детальные снимки Туманности Ориона. Это ближайшая к нам область звездообразования, иначе называемая звёздными яслями. Каждый элемент причудливой формы из газа и пыли в этой области — это бесценный кладезь знаний о самых первых этапах зарождения звёзд, изучать которые можно десятилетиями.

 Источник изображений: PDRs4All

Источник изображений: PDRs4All

Мы же начнём с неземной красоты Туманности Ориона. Этот объект виден с Земли невооружённым взглядом, и учёные тысячелетиями пытались разгадать его происхождение и сущность. Расположена туманность в 1500 световых годах от Солнечной системы. В видимом диапазоне многие структуры туманности разглядеть нельзя — мешают плотные скопления пыли и газа. Инфракрасный телескоп «Джеймс Уэбб» стал тем инструментом, который способен заглянуть внутрь нагретых облаков, пыль и газ которых разогревает и разгоняет ультрафиолетовое излучение молодых и горячих звёзд.

Более того, излучение молодых звёзд меняет не только физические формы пыли и газа, оно ещё запускает множество химических процессов в веществе туманности. Собственно, название программы изучения физики и химии областей звездообразования говорит само за себя — она изучат в них процессы фотодиссоциации. И здесь «Уэбб» стал незаменим. Его спектрометры не такие широкоугольные, как оптические и инфракрасные приборы, но способны предоставить в тысячу раз больше информации на каждый кадр, чем приборы, работающие с видимым светом.

В Туманности Ориона учёные обнаружили свыше 600 химических веществ и соединений, которые расскажут о химии областей, где рождаются звёзды. Собрано столько данных, что их будут анализировать не одно десятилетие, говорят участники программы. Материала так много, что по этому наблюдению в журнале Astronomy & Astrophysics одновременно вышло шесть статей. И это только верхушка айсберга!

«Джеймс Уэбб» засёк древнейшее в истории наблюдений столкновение сверхмассивных чёрных дыр, многое объясняющее в эволюции Вселенной

В опубликованной в четверг работе в журнале The Monthly Notices of the Royal Astronomical Society группа астрономов сообщила, что обнаружила древнейшее за всё время наблюдений столкновение сверхмассивных чёрных дыр. Слияние этих колоссальных объектов произошло через 740 млн лет после Большого взрыва. Это стало доказательством, что чёрные дыры с самого начала играли значительную роль в эволюции галактик, и объяснило их стремительный рост в древности.

 Квазар Источник изображения: NASA

Квазар ZS7. Источник изображения: NASA

С появлением невероятного по чувствительности в инфракрасном диапазоне космического телескопа им. Джеймса Уэбба астрономам стали открываться явления в ранней Вселенной, куда предыдущее приборы не могли заглянуть. Это период, когда Вселенная ещё не перешагнула рубеж первого миллиарда существования из нынешних примерно 13,8 млрд лет.

Одной из загадок детства Вселенной стало открытие множества сверхмассивных чёрных дыр до первого миллиарда её развития. Согласно нашим теориям, эти объекты никак не успевали в то время развиться до детектируемых масс от нескольких десятков млн солнечных масс до млрд солнечных масс. На эти процессы должны уходить миллиарды лет, а не сотни миллионов, как показывают данные «Уэбба». Новое наблюдение как раз объясняет, каким образом чёрные дыры могли быстро набирать массу в древности, и это слияния, которых в те времена не должно было бы быть так много, чтобы они оказали влияние на всю последующую эволюцию галактики и самой Вселенной. Похоже, земная наука ошибалась на этот счёт.

«Наши результаты показывают, что слияние является важным путём, по которому чёрные дыры могут быстро расти даже на заре космоса, — сказала в заявлении руководитель исследования и учёный из Кембриджского университета Ханна Юблер (Hannah Übler). — Вместе с другими открытиями «Уэбба» активных массивных чёрных дыр в далёкой Вселенной наши результаты также показывают, что массивные чёрные дыры формировали эволюцию галактик с самого начала».

По факту исследователи засекли признаки активности древнего квазара — активного центра галактики ZS7, в центре которого живёт и быстро питается сверхмассивная чёрная дыра. Спектральной чувствительности «Уэбба» хватило, чтобы увидеть в излучении объекта две составляющие. Обе они оказались сверхмассивными чёрными дырами на грани слияния. Об этом подсказало интенсивное излучение от разогретого газа в аккреционном диске чёрных дыр, а также анализ плотности ионизированного газа.

Масса одного из объектов была определена с достаточной точностью — она составила 50 млн солнечных. Масса второй чёрной дыры оценивается как примерно такая же, но точно учёные сказать не смогли — этому помешало плотное скопление газа на пути излучения.

«Звёздная масса изученной нами системы [галактики ZS7] аналогична массе нашего соседа, Большого Магелланова облака, — поясняют учёные. — Мы можем попытаться представить, как могло бы повлиять на эволюцию сливающихся галактик, если бы в каждой галактике была одна сверхмассивная чёрная дыра, такая же большая, как у нас в Млечном Пути». Тем самым астрономы намекают, что наши модели эволюции галактик явно не учитывают множества аспектов их поведения на заре появления и это надо исследовать.

Кстати, с июня этого года «Уэбб» будет регулярно предоставляться для наблюдений сверхмассивных чёрных дыр, так что новых открытий будет не много, а очень много. Впрочем, больше информации о столкновениях чёрных дыр предоставят учёным гравитационно-волновые обсерватории, первые из которых уже работают. Такие обсерватории следующего поколения и, особенно, космического базирования смогут фиксировать столкновения чёрных дыр далеко и обильно. Жаль только, что заработают эти инструменты не раньше середины следующего десятилетия.

Учёные обнаружили необъяснимую экзопланету — она обладает плотностью сахарной ваты

Среди более чем 5000 открытых учёными экзопланет нашлось настоящее чудо — планета-гигант с плотностью сахарной ваты. Есть только одна экзопланета с ещё меньшей плотностью, и обе они не вписываются ни в какие модели эволюции планет. Это тот случай, когда наука получает шанс продвинуться вперёд, и возможно совсем скоро, в чём поможет космическая обсерватория им. Джеймса Уэбба.

 Художественное представление планеты-одуванчика. Источник изображения: NASA, ESA, CSA, J. Olmsted/STScI

Художественное представление планеты-одуванчика. Источник изображения: NASA, ESA, CSA, J. Olmsted/STScI

Как сообщила сегодня в журнале Nature Astronomy международная команда учёных, на расстоянии 1232 световых года от Земли открыта одна из самых странных на сегодня экзопланет — WASP-193b. Вселенная полна чудесами, и обнаружить экзопланету с плотностью 0,059 г/см3 — это самое редкое из них. Для сравнения, плотность Земли равна 5,51 г/см3. Плотность Юпитера, с которым экзопланету WASP-193b роднят размеры, составляет 1,33 г/см3. Плотность сахарной ваты, добавим, равна 0,05 г/см3.

Учёные затрудняются вообразить, из какого вещества может стоять экзопланета с подобной плотностью. Она вращается вокруг подобной Солнцу звезды WASP-193. Эта звезда примерно в 1,1 раза больше массы Солнца, а её радиус больше радиуса Солнца в 1,2 раза. Температуры у них похожие, возраст — тоже. Единственное что выделяет эту далёкую систему — экзопланета-одуванчик совершает один оборот вокруг своей звезды за 6,25 дня. В нашей системе таких планет нет.

«Её чрезвычайно низкая плотность делает её настоящей аномалией среди более чем пяти тысяч экзопланет, открытых на сегодняшний день. Эта чрезвычайно низкая плотность не может быть воспроизведена стандартными моделями облучённых газовых гигантов, даже при нереалистичном предположении о структуре без сердцевины», — сетуют учёные. Изучая транзит планеты по диску звезды, исследователи вычислили, что радиус WASP-193b примерно в 1,46 раза больше радиуса Юпитера. Но её масса невероятно мала: всего 0,139 от массы Юпитера.

Изучение второй такой экзопланеты — Kepler-51d, которая намного меньше WASP-193b, дало некоторую подсказку, почему обнаруженный газовый гигант очень лёгкий. По всей видимости, близкая звезда настолько сильно разогревает экзопланету, что её атмосфера распухла до чрезвычайных объёмов. В то же время планета не может находиться в таком состоянии бесконечно долго — максимум несколько миллионов лет. Однако возраст звезды составляет 6 млрд лет и она давно не молодая и не горячая, чтобы сотворить что-то подобное с атмосферой близкой экзопланеты. Одно дело, если бы события происходили на заре рождения звёздной системы. Но спустя 6 млрд лет такое невозможно. По крайней мере, с точки зрения наших знаний.

Учёные намерены разгадать загадку экзопланеты WASP-193b с помощью космической обсерватории им. Джеймса Уэбба. Она создавалась, в том числе, для анализа атмосфер экзопланет. Изучение атмосферы WASP-193b будет продолжено с использованием «Уэбба». Но это будет уже другая история.

Камера для поиска тёмной энергии запечатлела «Руку Бога» из молекулярного водорода

Установленная на телескопе им. Виктора Бланко камера для поиска тёмной энергии получила новое изображение интереснейшего объекта — разорванной кометарной глобулы CG4, также известной как «Рука Бога». На снимке подсвеченная кроваво-красным ореолом призрачная рука тянется к спиральной галактике. Но никакой мистики в этом нет: камера чувствительна к излучению молекулярного водорода, разогретого излучением близких звёзд, а он светится красным.

 Источник изображения: CTIO/NOIRLab/DOE/NSF/AURA

Источник изображения: CTIO/NOIRLab/DOE/NSF/AURA

Кометарные глобулы впервые были обнаружены в 1976 году. Они имеют слабое свечение, поэтому плохо различимы на снимках. Также для образования подобных структур должен быть соблюдён ряд условий, поэтому повсеместно они не встречаются. Образования отдалённо напоминают кометы с ядром и хвостом, но к кометам они не имеют никакого отношения. Это плотные газопылевые облака, выбросившие хвосты под воздействием давления излучения звёзд или в процессе взрыва сверхновых. Впрочем, природа образования кометарных глобул продолжает оставаться предметом научных споров.

Свет молодых и горячих звёзд в шарообразных облаках вызывает свечение молекулярного водорода, который на снимках в ближнем инфракрасном диапазоне выглядит красным, придавая облакам и хвостам глобул мистический облик. В глобулах достаточно пыли и газа для зарождения новых звёзд, что придаст им новые черты и, в итоге, развеет в пространстве.

Большинство кометарных глобул обнаружено в туманности Гамма, в центре которой может находиться пульсар (нейтронная звезда), оставшийся после взрыва сверхновой. Вероятно, этот взрыв породил глобулы, которых в области туманности насчитывается свыше 30 штук. Но «Рука Бога» — это самый впечатляющий из подобных объектов. Его ядро имеет диаметр 1,5 световых лет, а хвост простирается на 8 световых лет. К тому же, разрыв глобулы действительно напоминает руку, тянущуюся к далёкой галактике. И это действительно красиво.

«Джеймс Уэбб» обнаружил лучшее доказательство существования атмосферы у похожей на Землю планеты за пределами Солнечной системы

Обитаемость инопланетных миров — это один из фундаментальных вопросов, на который пока нет ответа. Обнаружено свыше 5000 экзопланет, о которых наука знает исчезающе мало. Например, до сих пор не было надёжного доказательства существования атмосфер у скалистых миров, похожих на Землю. Если экзопланеты газовые гиганты без стеснения показывали свою раздутую атмосферу, то со скалистыми мирами всё было очень и очень неоднозначно.

 Художественное представление экзопланеты. Источник изображениq: NASA

Художественное представление экзопланеты 55 Cancri e. Источник изображениq: NASA

Возможности космической обсерватории им. Джеймса Уэбба открыли доступ к сбору данных по атмосферам экзопланет. Это довольно узкий канал для получения бесценной информации, но он есть и учёные им активно пользуются. Если экзопланета достаточно горяча или проходит по лику своей звезды, «Уэбб» фиксирует спектры излучения и поглощения в области наблюдений и помогает сделать вывод о наличии атмосферной оболочки и её приблизительном составе.

В 2004 году на удалении 41 световой год от Земли в двойной системе 55 Рака у солнцеподобной звезды 55 Рака A учёные обнаружили горячую суперземлю 55 Cancri e (55 Рака e). Экзопланета была примерно в два раза больше Земли и немного плотнее её. С тех пор 55 Рака e была под пристальным наблюдением множества научных коллективов, но обнаружить наличие атмосферы у экзопланеты не удавалось никакими способами.

Следует сказать, что планета 55 Рака e слишком горяча для возникновения там жизни. Она вращается у своей звезды примерно на четверть расстояния от Солнца до Меркурия. Её поверхность, судя по всему — это бурлящий океан магмы. Для учёных это возможность заглянуть в прошлое Земли, Венеры или Марса, когда планеты из нашей системы тоже были раскалёнными шариками. Это возможность понять процессы образования атмосфер на скалистых планетах и их взаимодействия с планетарным веществом.

Наблюдения за экзопланетой 55 Рака e позволили обнаружить признаки плотной и тонкой атмосферной оболочки. По словам исследователей — это лучшее доказательство наличия атмосфер у скалистых экзопланет за всю историю наблюдений подобных объектов. Данные получены благодаря высокой чувствительности «Уэбба» в ближнем и среднем инфракрасном диапазоне.

Крошечные колебания света в диапазоне от 4 до 12 мкм позволили обнаружить поглощения спектральных линий, сигнализирующие о наличии в атмосфере 55 Рака e монооксида и диоксида углерода, которые, очевидно, выделяются и поддерживаются (что наиболее важно в данном исследовании) глобальным магматическим океаном. Иначе говоря, скалистый мир самостоятельно создаёт и поддерживает атмосферную оболочку. Первичную атмосферу давно ободрало бы излучение близкой звезды.

Также «Уэбб» определил, что дневная сторона экзопланеты холоднее, чем предсказывает моделирование. Измерения показали, что температура поверхности на дневной стороне составляет 1540 °C. Если бы на планете не было атмосферы, она разогревалась бы до 2000 °C или около того. К охлаждению может привести либо перемещение лавовых потоков, либо атмосферных масс с дневной на ночную сторону (планета, суда по всему, находится в приливном захвате и всё время обращена к своей звезде одной стороной). Лаву можно исключить — явно не та динамика. Тем самым получено ещё одно косвенное доказательство наличия атмосферы у 55 Рака e.

«В конечном счете, мы хотим понять, какие условия позволяют скалистой планете поддерживать богатую газом атмосферу: ключевой компонент пригодной для жизни планеты», — говорят исследователи.

Чёрные дыры в ранней Вселенной развивались быстрее галактик, показали наблюдения «Джеймса Уэбба»

В вопросе эволюции черных дыр много тёмных пятен. Космическая обсерватория им. Джеймса Уэбба позволяет прояснить ряд из них, поскольку она может заглянуть во времена ранней Вселенной. Например, «Уэбб» способен оценить размеры чёрных дыр и галактик 13 млрд лет назад и дать подсказку о том, что из них эволюционировало быстрее. Знание начальных условий многое прояснит в эволюции Вселенной и наблюдаемых в ней объектов.

 Квазар J0148 со сверхмассивной чёрной дырой в центре галактики. Источник изображения: NASA

Квазар J0148 со сверхмассивной чёрной дырой в его центре. Источник изображения: NASA

Группа астрономов из Массачусетского технологического института опубликовала в журнале Astrophysical Journal работу, в которой рассказала об исследовании шести квазаров на удалении около одного миллиарда лет от Большого взрыва. Квазары — это активные центры галактик. Фактически — это диск аккреции вокруг сверхмассивной чёрной дыры в центре галактики, в котором вещество разогревается так сильно, что светит на несколько порядков ярче всех остальных звёзд в галактике-хозяйке. И «Уэбб» стал тем инструментом, который помог на безумном удалении отделить свет звёзд от света аккрецирующих дисков.

Измерения показали, что чёрные дыры в центрах древних галактик имеют массы порядка 10 % от массы окружающих их звёзд. С одной стороны, это не кажется слишком много. Однако следует принимать во внимание, что сверхмассивные чёрные дыры в центрах галактик в нашей части Вселенной имеют массы до 0,1 % от масс звёзд в галактиках-хозяйках. Данное наблюдение даёт возможность сделать вывод, что в ранней Вселенной чёрные дыры эволюционировали быстрее галактик.

Более того, сверхмассивные чёрные дыры, судя по данной работе, могли возникнуть из более тяжёлых зародышевых первичных чёрных дыр, чем это предполагалось раньше. В противном случае учёным нечем объяснить тот факт, что всего через 1 млрд лет после Большого взрыва чёрные дыры развились до масс в несколько миллионов и миллиардов масс Солнца.

«Джеймс Уэбб» запечатлел невиданные детали туманности Конская Голова

Туманность Конская Голова — это не только один из самых фотогеничных объектов во Вселенной, но также источник ценных данных о физических и химических процессах в межзвёздных средах газа и пыли. Одна из групп астрономов использовала телескоп «Джеймс Уэбб» для изучения структур этого объекта и впервые получила изображения пограничных областей туманности в беспрецедентных деталях.

 Источник изображений: NASA

Источник изображений: NASA

Туманность Конская Голова расположена на удалении 1500 световых лет от Земли. Это достаточно плотный сгусток пыли и газа, возникший в результате коллапса облака в этой области пространства. Это облако подсвечено ультрафиолетовым светом от расположенной недалеко молодой и горячей звезды, свет которой также меняет химический состав газа и рассеивает его и пыль. В конечном итоге туманность тоже со временем исчезнет под давлением излучения звёзд, но для Конской Головы это случится примерно через 5 млн лет.

С помощью инфракрасных приборов «Уэбба» учёные впервые получили изображение «гривы» Конской Головы — пограничной области пространства длиной 0,8 световых лет. Исследователей интересовал вопрос поведения пыли и газа в области рассеивания, где эти процессы видны наиболее отчётливо.

 Сравнение изображения туманности Конская Голова, полученное разными телескопами

Сравнение изображений туманности Конская Голова, полученных разными телескопами

Благодаря новым наблюдениям удалось лучше представить объёмную картину распределения пыли и газа туманности в области рассеивания и увидеть, как вещество тонкими струйками уносится в пустое пространство. Позже будут проанализированы спектральные данные, полученные с помощью «Уэбба». Ультрафиолет в процессе фотодиссоциации меняет химический и физический состав газопылевой среды туманности, а это ключ к пониманию эволюции вещества во Вселенной. Такие знания на дороге не валяются, и «Уэбб» стал незаменимым инструментом на пути к их получению.


window-new
Soft
Hard
Тренды 🔥
Google добавила редактирование RCS-сообщений и другие полезные функции в Android 27 мин.
Эндгейм подкрался незаметно: авторы перспективного «дьяблоида» Wolcen: Lords of Mayhem решили забросить разработку всего через четыре года после релиза 35 мин.
«Страшно затягивает»: первобытная песочница-выживалка Soulmask вышла в топ продаж Steam в день релиза в раннем доступе 2 ч.
Глава Take-Two Interactive уклонился от ответа, выйдет ли GTA VI на ПК 2 ч.
Twitch уволил всех членов совета по безопасности — их заменят избранные пользователи 2 ч.
Google обвинила в странных ответах поискового ИИ самих пользователей и недостаток обучающих данных 4 ч.
Слухи: Konami скоро объявит о переносе Metal Gear Solid Delta: Snake Eater на 2025 год 5 ч.
Свежее обновление для Windows 11 сломало панель задач 6 ч.
Инсайдер рассекретил последнюю тайную игру, которую раздадут во время мегараспродажи Epic Games Store — есть хорошая новость и плохая 7 ч.
«Стражи галактики» встречают Overwatch: мультиплеерный шутер Concord от бывших разработчиков Destiny 2 разочаровал игроков ещё до релиза 8 ч.