Сегодня 18 мая 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

Екатеринбургский УрФУ создал оптоволокно, устойчивое к сверхвысоким дозам радиации — для работы в космосе и агрессивных средах

Исследователи расположенного в Екатеринбурге Уральского федерального университета (УрФУ) создали оптоволокно, способное работать в средах со сверхвысоким уровнем радиации. Это позволяет использовать его как в традиционной электронике, так и в космосе, а также на ядерных объектах.

 Источник изображения: JJ Ying/unsplash.com

Источник изображения: JJ Ying/unsplash.com

Как сообщает РИА «Новости», подобное оптическое волокно будет крайне востребовано в космических проектах, поскольку его можно будет использовать при создании аппаратов с защитой от сильного ионизирующего космического излучения. Более того, разработанное в УрФУ оптоволокно можно встраивать и в инфракрасные космические телескопы, что позволит заменять массивные зеркала и линзы — они способны как принимать, так и передавать излучение космических объектов. При этом авторы разработки предполагают, что срок службы подобного оптоволокна будет выше, чем срок работы самих телескопов.

Сообщается, что оптоволокно создано на основе монокристаллов бромистого и йодистого серебра (AgBr–AgI). Компьютерное моделирование позволило определить оптимальные условия их изготовления для выпуска однородных оптических волокон, работающих в инфракрасном диапазоне. По данным издания, «присутствие в кристаллической решётке бромида серебра анионов йода определило дополнительную фото- и радиационную стойкость волокон, расширило диапазон пропускания ими инфракрасного излучения». Компьютерное моделирование уже получило экспериментальное подтверждение.

Как заявила Анастасия Южакова, представляющая лабораторию волоконных технологий и фотоники УрФУ, «на основе монокристаллов системы AgBr–AgI мы создали оптические волокна с самым широким на сегодня инфракрасным диапазоном пропускания — от 3 до 25 микрон. При этом прозрачность волокон достигает 70–75 %, что соответствует теоретически возможным значениям для кристаллов системы AgBr–AgI. В то же время оптические потери волокон достигают предельно низких значений».

По мнению учёных, в перспективе это позволяет применять волокна не только в обычной оптоэлектронике, но и в условиях интенсивного ионизирующего излучения — в лазерной хирургии, эндоскопической и диагностической медицине и даже при определении составов отходов атомной промышленности и, конечно, в космосе. Результаты работ уже опубликованы в издании Оptical materials.

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
Thermal Grizzly выпустила кастомную крышку для чипов Intel LGA 1700 — с ней температура падает почти на 15 °C 52 мин.
Короткие кабели затормозили внедрение DisplayPort 2.1 UHBR20 — сделать длиннее не получается 2 ч.
Новая технология активного шумоподавления с ИИ позволяет выделить определённые звуки и убрать все лишние 3 ч.
Сродни изобретению транзистора: создан самый маленький детектор квантового света — он поможет масштабировать квантовые компьютеры 4 ч.
Чипы стали новой нефтью в борьбе мировых держав за лидерство 4 ч.
Индия отправит на Марс собственный ровер и вертолёт 5 ч.
Первый запуск Boeing Starliner с людьми снова перенесли — на космическом корабле обнаружили утечку гелия 7 ч.
Раскладушки Motorola Razr 50 и Razr 50 Ultra получат большие внешние экраны и свежие процессоры 8 ч.
XPeng начнёт продавать электромобиль с электролётом в багажнике в 2026 году 12 ч.
Слухи: Apple готовит сверхтонкий iPhone 17 — он выйдет в 2025 году и будет дороже iPhone 17 Pro Max 15 ч.